Repositioning Candidate Details
Candidate ID: | R0473 |
Source ID: | DB01274 |
Source Type: | approved; investigational |
Compound Type: | small molecule |
Compound Name: | Arformoterol |
Synonyms: | (-)-formoterol; (R,R)-formoterol; Arformoterol |
Molecular Formula: | C19H24N2O4 |
SMILES: | COC1=CC=C(C[C@@H](C)NC[C@H](O)C2=CC(NC=O)=C(O)C=C2)C=C1 |
Structure: |
|
DrugBank Description: | Arformoterol is a bronchodilator. It works by relaxing muscles in the airways to improve breathing. Arformoterol inhalation is used to prevent bronchoconstriction in people with chronic obstructive pulmonary disease, including chronic bronchitis and emphysema. The use of arformoterol is pending revision due to safety concerns in regards to an increased risk of severe exacerbation of asthma symptoms, leading to hospitalization as well as death in some patients using long acting beta agonists for the treatment of asthma. |
CAS Number: | 67346-49-0 |
Molecular Weight: | 344.4049 |
DrugBank Indication: | A bronchodilator used for the long term, symptomatic treatment of reversible bronchoconstriction in patients with chronic obstructive pulmonary disease (COPD), including chronic bronchitis and emphysema. |
DrugBank Pharmacology: | Arformoterol, the active (R,R)-enantiomer of formoterol, is a selective long-acting β2-adrenergic receptor agonist (beta2-agonist) that has two-fold greater potency than racemic formoterol (which contains both the (S,S) and (R,R)-enantiomers). The (S,S)-enantiomer is about 1,000-fold less potent as a β2-agonist than the (R,R)-enantiomer. Arformoterol seems to have little or no effect on β1-adrenergic receptors. |
DrugBank MoA: | While it is recognized that β2-receptors are the predominant adrenergic receptors in bronchial smooth muscle and β1-receptors are the predominant receptors in the heart, data indicate that there are also β2-receptors in the human heart comprising 10% to 50% of the total beta-adrenergic receptors. The precise function of these receptors has not been established, but they raise the possibility that even highly selective β2-agonists may have cardiac effects. The pharmacologic effects of β2-adrenoceptor agonist drugs, including arformoterol, are at least in part attributable to stimulation of intracellular adenyl cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3′,5′-adenosine monophosphate (cyclic AMP). Increased intracellular cyclic AMP levels cause relaxation of bronchial smooth muscle and inhibition of release of proinflammatory mediators from cells, especially from mast cells. In vitro tests show that arformoterol is an inhibitor of the release of mast cell mediators, such as histamine and leukotrienes, from the human lung. Arformoterol also inhibits histamine-induced plasma albumin extravasation in anesthetized guinea pigs and inhibits allergen-induced eosinophil influx in dogs with airway hyper-response. |
Targets: | Beta-2 adrenergic receptor agonist |
Inclusion Criteria: | Therapeutic strategy associated |

Strategy ID | Strategy | Synonyms | Related Targets | Related Drugs | |
---|---|---|---|---|---|
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class |
---|