Research Article Details
Article ID: | A12089 |
PMID: | 30606929 |
Source: | Yakugaku Zasshi |
Title: | [A Multifaceted Approach regarding the Association of the DsbA-L Gene with the Risk of Obesity-related Diseases Based on Clinical Pharmacogenetics]. |
Abstract: | Adiponectin, the most abundant adipose tissue-derived adipocytokine, improves insulin sensitivity and has anti-inflammatory properties. Disulfide-bond A oxidoreductase-like protein (DsbA-L) is a key molecule in the multimerization of adiponectin (i.e., activation of adiponectin). In mice, liver-specific knockout of the Dsba-L gene impaired the mitochondrial function in hepatocytes and exacerbated the high-fat-diet-induced fatty liver. In addition, the DsbA-L mRNA level is negatively correlated with body mass index (BMI) in humans. We recently investigated the clinical impact of the DsbA-L gene on lifestyle-related diseases in Japanese subjects. We confirmed the influence of the common DsbA-L rs1917760 polymorphism on the multimerization of adiponectin, as well as the association of the polymorphism with the risk of obesity and non-alcoholic fatty liver disease, using prediction models based on a non-linear mixed effect model and/or structural equation models among elderly participants in a health screening program. We also observed a decreasing effect of DsbA-L polymorphism on the DsbA-L mRNA level in peripheral blood mononuclear cells, and an increasing effect of the polymorphism on the prevalence of excessive weight among schizophrenia patients at a high risk for obesity. These findings suggest that DsbA-L may be a key molecule associated with the development and progression of obesity and its related diseases. Therefore, genotyping the DsbA-L polymorphism and identifying patients at a high risk of developing obesity may help prevent obesity and its complications by facilitating targeted prevention and treatment programs for high-risk individuals. |
DOI: | 10.1248/yakushi.18-00163-3 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |