Research Article Details
Article ID: | A01233 |
PMID: | 34819792 |
Source: | Saudi Pharm J |
Title: | Cold-pressed raspberry seeds oil ameliorates high-fat diet triggered non-alcoholic fatty liver disease. |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) is considered one of the most serious public health problems affecting liver. The reported beneficial impact of raspberries on obesity and associated metabolic disorder makes it a suitable candidate against NAFLD. In the current study, the chemical profile of raspberry seed oil (RO) was characterized by analysis of fatty acid and tocopherol contents using high-performance liquid chromatography (HPLC) in addition to the determination of total phenolic and flavonoids. High levels of unsaturated fatty acids, linoleic acid (49.9%), α-linolenic acid (25.98%), and oleic acid (17.6%), along with high total tocopherol content (184 mg/100 gm) were detected in oil. The total phenolic and flavonoid contents in RO were estimated to be 22.40 ± 0.25 mg gallic acid equivalent (GAE)/100 mg oil and 1.34 ± 0.15 mg quercetin (QU)/100 mg, respectively. Anti-NAFLD efficacy of RO at different doses (0.4 and 0.8 mL) in a model of a high-fat diet (HFD) fed rats was assessed by estimating lipid profile, liver enzyme activity, glucose and insulin levels as well as adipokines and inflammatory marker. Peroxisome proliferator-activated receptor γ (PPARγ), which is a molecular target for NAFLD was also tested. Liver histopathology was carried out and its homogenate was used to estimate oxidative stress markers. Consumption of RO significantly improved lipid parameters and hepatic enzyme activities, reduced insulin resistance and glucose levels, significantly ameliorated inflammatory and oxidative stress markers. Furthermore, RO treatment significantly modulated adipokines activities and elevated PPARγ levels. Raspberry seed oil administration significantly improved these HFD induced histopathological alterations. Moreover, a molecular docking study was performed on the identified fatty acids and tocopherols. Among the identified compounds, oleic acid, α-linolenic acid and γ-tocopherol exhibited the highest docking score as PPARγ activator posing them as a potential anti-NAFLD drug leads. Study findings suggest RO as an effective therapeutic candidate for ameliorating NAFLD. |
DOI: | 10.1016/j.jsps.2021.09.014 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D293 | Quercetin | Supplement | DB04216 | AHR; EIF3F; SF3B3; NR1I2 activator | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |