Research Article Details
Article ID: | A12923 |
PMID: | 30225267 |
Source: | J Diabetes Res |
Title: | Rosiglitazone Elicits an Adiponectin-Mediated Insulin-Sensitizing Action at the Adipose Tissue-Liver Axis in Otsuka Long-Evans Tokushima Fatty Rats. |
Abstract: | Rosiglitazone is an agonist of peroxisome proliferator-activated receptor- (PPAR-) γ that is principally associated with insulin action. The exact mechanisms underlying its insulin-sensitizing action are still not fully elucidated. It is well known that adiponectin mostly secreted in adipose tissue is an insulin sensitizer. Here, we found that treatment of Otsuka Long-Evans Tokushima Fatty (OLETF) rats with rosiglitazone (3 mg/kg, once daily, by oral gavage for 33 weeks) attenuated the increase in fasting plasma insulin concentrations and the index of the homeostasis model assessment of insulin resistance along with the age growth and glucose concentrations during an oral glucose tolerance test. In addition, the increase in plasma alanine aminotransferase activity, concentrations of fasting plasma nonesterified fatty acids and triglyceride, and hepatic triglyceride content was also suppressed. The hepatic protein expression profile revealed that rosiglitazone increased the downregulated total protein expression of insulin receptor substrate 1 (IRS-1) and IRS-2. Furthermore, the treatment suppressed the upregulated phosphorylation of IRS-1 at Ser307 and IRS-2 at Ser731. The results indicate that rosiglitazone ameliorates hepatic and systemic insulin resistance, hepatic inflammation, and fatty liver. Mechanistically, rosiglitazone suppressed hepatic protein overexpression of both phosphorylated nuclear factor- (NF-) κBp65 and inhibitory-κB kinase-α/β, a transcription factor that primarily regulates chronic inflammatory responses and the upstream NF-κB signal transduction cascades which are necessary for activating NF-κB, respectively. More importantly, rosiglitazone attenuated the decreases in adipose adiponectin mRNA level, plasma adiponectin concentrations, and hepatic protein expression of adiponectin receptor-1 and receptor-2. Thus, we can draw the conclusion that rosiglitazone elicits an adiponectin-mediated insulin-sensitizing action at the adipose tissue-liver axis in obese rats. Our findings may provide new insights into the mechanisms of action of rosiglitazone. |
DOI: | 10.1155/2018/4627842 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D311 | Rosiglitazone | Chemical drug | DB00412 | PPARG agonist; PPARA; PPARD | Improve insulin resistance | Failed in clinical trials | Details |