Research Article Details
Article ID: | A13192 |
PMID: | 30092609 |
Source: | Obes Rev |
Title: | The effect of exercise training on intrahepatic triglyceride and hepatic insulin sensitivity: a systematic review and meta-analysis. |
Abstract: | This systematic review and meta-analysis determined the impact of structured exercise training, and the influence of associated weight loss, on intrahepatic triglyceride (IHTG) in individuals with non-alcoholic fatty liver disease (NAFLD). It also examined its effect on hepatic insulin sensitivity in individuals with or at increased risk of NAFLD. Analyses were restricted to studies using magnetic resonance spectroscopy or liver biopsy for the measurement of IHTG and isotope-labelled glucose tracer for assessment of hepatic insulin sensitivity. Pooling data from 17 studies (373 exercising participants), exercise training for one to 24 weeks (mode: 12 weeks) elicits an absolute reduction in IHTG of 3.31% (95% CI: -4.41 to -2.22%). Exercise reduces IHTG independent of significant weight change (-2.16 [-2.87 to -1.44]%), but benefits are substantially greater when weight loss occurs (-4.87 [-6.64 to -3.11]%). Furthermore, meta-regression identified a positive association between percentage weight loss and absolute reduction in IHTG (β = 0.99 [0.62 to 1.36], P < 0.001). Pooling of six studies (94 participants) suggests that exercise training also improves basal hepatic insulin sensitivity (mean change in hepatic insulin sensitivity index: 0.13 [0.05 to 0.21] mg m-2  min-1 per μU mL-1 ), but available evidence is limited, and the impact of exercise on insulin-stimulated hepatic insulin sensitivity remains unclear. |
DOI: | 10.1111/obr.12719 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D018 | Aspirin | Chemical drug | DB00945 | AKR1C1 inhibitor; PCNA downregulator | Enhance lipid metabolism | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |