Research Article Details
Article ID: | A14620 |
PMID: | 29321172 |
Source: | Diabetes |
Title: | Modest Decreases in Endogenous All-trans-Retinoic Acid Produced by a Mouse Rdh10 Heterozygote Provoke Major Abnormalities in Adipogenesis and Lipid Metabolism. |
Abstract: | Pharmacological dosing of all-trans-retinoic acid (atRA) controls adiposity in rodents by inhibiting adipogenesis and inducing fatty acid oxidation. Retinol dehydrogenases (Rdh) catalyze the first reaction that activates retinol into atRA. This study examined postnatal contributions of Rdh10 to atRA biosynthesis and physiological functions of endogenous atRA. Embryonic fibroblasts from Rdh10 heterozygote hypomorphs or with a total Rdh10 knockout exhibit decreased atRA biosynthesis and escalated adipogenesis. atRA or a retinoic acid receptor (RAR) pan-agonist reversed the phenotype. Eliminating one Rdh10 copy in vivo (Rdh10+/- ) yielded a modest decrease (≤25%) in the atRA concentration of liver and adipose but increased adiposity in male and female mice fed a high-fat diet (HFD); increased liver steatosis, glucose intolerance, and insulin resistance in males fed an HFD; and activated bone marrow adipocyte formation in females, regardless of dietary fat. Chronic dosing with low-dose atRA corrected the metabolic defects. These data resolve physiological actions of endogenous atRA, reveal sex-specific effects of atRA in vivo, and establish the importance of Rdh10 to metabolic control by atRA. The consequences of a modest decrease in tissue atRA suggest that impaired retinol activation may contribute to diabesity, and low-dose atRA therapy may ameliorate adiposity and its sequelae of glucose intolerance and insulin resistance. |
DOI: | 10.2337/db17-0946 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |