Research Article Details
Article ID: | A14869 |
PMID: | 29198531 |
Source: | J Pediatr |
Title: | Laparoscopic Sleeve Gastrectomy Improves Nonalcoholic Fatty Liver Disease-Related Liver Damage in Adolescents by Reshaping Cellular Interactions and Hepatic Adipocytokine Production. |
Abstract: | OBJECTIVES: To investigate whether the modulation of local cellular cross-talks and the modification of hepatic adipocytokine expression could mechanistically explain the improvement of liver histopathology after laparoscopic sleeve gastrectomy (LSG) in adolescents with nonalcoholic fatty liver disease (NAFLD). STUDY DESIGN: Twenty obese (body mass index of ≥35 kg/m2) adolescents who underwent LSG and with biopsy-proven NAFLD were included. At baseline (T0) and 1 year after treatment, patients underwent clinical evaluation, blood tests, and liver biopsy. Hepatic progenitor cells, hepatic stellate cells (HSCs), macrophages, and adipocytokines were evaluated by immunohistochemistry and immunofluorescence. RESULTS: Liver biopsy samples after LSG demonstrated a significant improvement of NAFLD Activity Score and fibrosis. Immunohistochemistry indicated a significant reduction of hepatocyte cell cycle arrest, ductular reaction, activated HSC, and macrophage number after LSG compared with T0. The activation state of HSC was accompanied by modification in the expression of the autophagy marker LC3. Hepatocyte expression of adiponectin was significant higher after LSG than into T0. Moreover, LSG caused decreased resistin expression in Sox9+ hepatic progenitor cells compared with T0. The number of S100A9+ macrophages was also reduced by LSG correlating with resistin expression. Finally, serum levels of proinflammatory cytokines significantly correlated with macrophages and activated HSC numbers. CONCLUSIONS: The histologic improvement induced by LSG is associated with the reduced activation of local cellular compartments (hepatic progenitor cells, HSCs, and macrophages), thus, strengthening the role of cellular interactions and hepatic adipocytokine production in the pathogenesis of NAFLD. |
DOI: | 10.1016/j.jpeds.2017.10.036 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S09 | Bariatric surgery | Metabolic surgery | -- | -- | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |