Research Article Details
Article ID: | A16406 |
PMID: | 28414138 |
Source: | Biochem Pharmacol |
Title: | Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. |
Abstract: | Lipid metabolic disorders and oxidative stress in the liver are key steps in the progression of nonalcoholic fatty liver disease (NAFLD), which is a major risk factor for the development of metabolic syndrome. To date, no pharmacological treatment for this condition has been approved. Our previous study has found that the food-derived compound apigenin (Api) significantly attenuates obesity-induced metabolic syndrome by acting as a peroxisome proliferator-activated receptor gamma modulator (PPARM). Herein, a high fat diet (HFD) induced NAFLD model was used to dig out whether Api had the effect on NAFLD. The results showed that Api had obvious effect in restraining NAFLD progression, including attenuating HFD induced lipid accumulation and oxidative stress in vivo. As a PPARM, although Api did significantly inhibit the expression of PPARγ target genes encoding the protein associated with lipid metabolism, it had no obvious activating effect on PPARγ. Interestingly, we found that Api promoted Nrf2 into the nucleus, thereby markedly activating Nrf2 to inhibit the lipid metabolism related genes and increase the oxidative stress related genes. Further Nrf2 knockdown/knockout and overexpression experiments showed that Api regulating PPARγ target genes was dependent on Nrf2 activation and the activation of Nrf2 counteracted the activation effect of PPARγ by Api. Importantly, we also found that Api might bind with Nrf2 via auto dock and ITC assay. Therefore, our results indicate that Api ameliorates NAFLD by a novel regulating mode of Nrf2 and PPARγ in inhibiting lipid metabolism and oxidative stress abnormity. |
DOI: | 10.1016/j.bcp.2017.04.014 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T05 | Peroxisome proliferator-activated receptor gamma | PPARG | agonist | Nuclear hormone receptor | P37231 | PPARG_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |