Research Article Details
Article ID: | A17215 |
PMID: | 27909723 |
Source: | Mol Med Rep |
Title: | Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. |
Abstract: | Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease, the pathological process of which is complex. Activation of the c‑Jun N‑terminal kinase (JNK) signaling pathway is associated with the mechanism underlying obesity-induced insulin resistance. Furthermore, the JNK signaling pathway and dysfunctional autophagy serve important roles in hepatic lipid metabolism. However, the exact role of JNK in autophagy and obesity‑induced insulin resistance is not fully understood. Therefore, the present study aimed to investigate the underlying mechanisms by which the JNK signaling pathway regulates autophagy and insulin resistance in fatty liver. A rat model of NAFLD was established using a high‑fat diet (HFD), and insulin resistance in the livers of HFD rats was determined by peritoneal glucose tolerance testing. The results indicated that a HFD induced impaired glucose tolerance, liver function injury, insulin resistance and increased autophagy in rats. Treatment with SP600125, an inhibitor of JNK, relieved NAFLD in rats. Furthermore, SP600125 decreased the expression levels of autophagy-associated genes, including Beclin-1, microtubule-associated protein 1A/1B light chain 3, autophagy related gene (Atg)3 and Atg5, and the phosphorylation of insulin receptor (IR) β-subunit, IR substrate-1 and protein kinase B in vivo. In conclusion, JNK inhibition may suppress autophagy and attenuate insulin resistance. Therefore, JNK inhibition may provide a novel therapeutic strategy for the treatment of NAFLD. |
DOI: | 10.3892/mmr.2016.5966 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |