Research Article Details
Article ID: | A19288 |
PMID: | 26648452 |
Source: | J Cell Mol Med |
Title: | miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21. |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and lifestyle, while exercise is beneficial for NAFLD. Dysregulated microRNAs (miRs) control the pathogenesis of NAFLD. However, whether exercise could prevent NAFLD via targeting microRNA is unknown. In this study, normal or high-fat diet (HF) mice were either subjected to a 16-week running program or kept sedentary. Exercise attenuated liver steatosis in HF mice. MicroRNA array and qRT-PCR demonstrated that miR-212 was overexpressed in HF liver, while reduced by exercise. Next, we investigated the role of miR-212 in lipogenesis using HepG2 cells with/without long-chain fatty acid treatment (± FFA). FFA increased miR-212 in HepG2 cells. Moreover, miR-212 promoted lipogenesis in HepG2 cells (± FFA). Fibroblast growth factor (FGF)-21, a key regulator for lipid metabolism, was negatively regulated by miR-212 at protein level in HepG2 cells. Meanwhile, FFA downregulated FGF-21 both at mRNA and protein levels in HepG2 cells. Also, FGF-21 protein level was reduced in HF liver, while reversed by exercise in vivo. Furthermore, siRNA-FGF-21 abolished the lipogenesis-reducing effect of miR-212 inhibitor in HepG2 cells (± FFA), validating FGF-21 as a target gene of miR-212. These data link the benefit of exercise and miR-212 downregulation in preventing NAFLD via targeting FGF-21. |
DOI: | 10.1111/jcmm.12733 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D589 | Minor allele-specific small interfering RNA | Miscellany | -- | PNPLA3-rs738409 (I148M) variant inhibitor | -- | Under investigation | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |