Research Article Details
Article ID: | A20225 |
PMID: | 26078098 |
Source: | J Physiol Biochem |
Title: | FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice. |
Abstract: | Nonalcoholic fatty liver disease (NAFLD) is now the most common cause of chronic liver disease among children and adolescents in the developed world. Betaine, as a methyl donor, recently has been demonstrated to exert its hepatoprotective effects through rectifying the genomic DNA hypomethylation state. However, whether betaine supplementation affects N6-methyladenosine (m(6)A) mRNA methylation in NAFLD is still unknown. We conducted the current study to investigate the effects of betaine supplementation during adolescence on high-fat diet-induced pathological changes in liver of mice, and we further identified the effects of betaine supplementation on expression of the fat mass and obesity-associated gene (FTO) and hepatic m(6)A mRNA methylation. Our results showed that betaine supplementation across adolescence significantly alleviated high-fat-induced impairment of liver function and morphology as well as ectopic fat accumulation. Surprisingly, no significant effects on serum TG and NEFA level, as well as fat mass, were observed in mice supplemented with betaine. We also found that high-fat diet upregulated ACC1 and FAS gene expression and downregulated HSL and ATGL gene expression. However, these alterations were rectified by betaine supplementation. Moreover, an m(6)A hypomethylation state and increased FTO expression were detected in mice fed with high-fat diet, while betaine supplementation prevented these changes. Our results suggested that betaine supplementation during adolescence could protect mice from high-fat-induced NAFLD by decreasing de novo lipogenesis and increasing lipolysis. Furthermore, a novel FTO-dependent function of m(6)A may involve in the hepatoprotective effects of betaine. |
DOI: | 10.1007/s13105-015-0420-1 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T21 | Diacylglycerol O-acyltransferase 2 | DGAT2 | inhibitor | Enzyme | Q96PD7 | DGAT2_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |