Research Article Details
Article ID: | A21781 |
PMID: | 25048951 |
Source: | J Hepatol |
Title: | CXCL10 plays a key role as an inflammatory mediator and a non-invasive biomarker of non-alcoholic steatohepatitis. |
Abstract: | BACKGROUND & AIMS: Perpetuate liver inflammation is crucial in the pathogenesis of non-alcoholic steatohepatitis (NASH). Expression of CXCL10, a pro-inflammatory cytokine, correlates positively with obesity and type 2 diabetes. Whether CXCL10 plays a role in NASH was unknown. We aimed to investigate the functional and clinical impact of CXCL10 in NASH. METHODS: Cxcl10 gene-deleted (Cxcl10(-/-)) and C57BL/6 wild type (WT) mice were fed a methionine- and choline-deficient (MCD) diet for 4 or 8 weeks. In other experiments, we injected neutralizing anti-CXCL10 mAb into MCD-fed WT mice. Human serum was obtained from 147 patients with biopsy-proven non-alcoholic fatty liver disease and 73 control subjects. RESULTS: WT mice, fed the MCD diet, developed steatohepatitis with higher hepatic CXCL10 expression. Cxcl10(-/-) mice were refractory to MCD-induced steatohepatitis. We further revealed that CXCL10 was associated with the induction of important pro-inflammatory cytokines (TNF-α, IL-1β, and MCP-1) and activation of the NF-κB pathway. CXCL10 was linked to steatosis through upregulation of the lipogenic factors SREBP-1c and LXR, and also to oxidative stress (upregulation of CYP2E1 and C/EBPβ). Blockade of CXCL10 protected against hepatocyte injury in vitro and against steatohepatitis development in mice. We further investigated the clinical impact of CXCL10 and found circulating and hepatic CXCL10 levels were significantly higher in human NASH. Importantly, the circulating CXCL10 level was correlated with the degree of lobular inflammation and was an independent risk factor for NASH patients. CONCLUSIONS: We demonstrate for the first time that CXCL10 plays a pivotal role in the pathogenesis of experimental steatohepatitis. CXCL10 maybe a potential non-invasive biomarker for NASH patients. |
DOI: | 10.1016/j.jhep.2014.07.006 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |