Research Article Details
Article ID: | A02181 |
PMID: | 34471049 |
Source: | Biol Pharm Bull |
Title: | Structural Basis for Anti-non-alcoholic Fatty Liver Disease and Diabetic Dyslipidemia Drug Saroglitazar as a PPAR α/γ Dual Agonist. |
Abstract: | Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor-type transcription factors that consist of three subtypes (α, γ, and β/δ) with distinct functions and PPAR dual/pan agonists are expected to be the next generation of drugs for metabolic diseases. Saroglitazar is the first clinically approved PPARα/γ dual agonist for treatment of diabetic dyslipidemia and is currently in clinical trials to treat non-alcoholic fatty liver disease (NAFLD); however, the structural information of its interaction with PPARα/γ remains unknown. We recently revealed the high-resolution co-crystal structure of saroglitazar and the PPARα-ligand binding domain (LBD) through X-ray crystallography, and in this study, we report the structure of saroglitazar and the PPARγ-LBD. Saroglitazar was located at the center of "Y"-shaped PPARγ-ligand-binding pocket (LBP), just as it was in the respective region of PPARα-LBP. Its carboxylic acid was attached to four amino acids (Ser289/His323/His449/Thr473), which contributes to the stabilization of Activating Function-2 helix 12, and its phenylpyrrole moiety was rotated 121.8 degrees in PPARγ-LBD from that in PPARα-LBD to interact with Phe264. PPARδ-LBD has the consensus four amino acids (Thr253/His287/His413/Tyr437) towards the carboxylic acids of its ligands, but it seems to lack sufficient space to accept saroglitazar because of the steric hindrance between the Trp228 or Arg248 residue of PPARδ-LBD and its methylthiophenyl moiety. Accordingly, in a coactivator recruitment assay, saroglitazar activated PPARα-LBD and PPARγ-LBD but not PPARδ-LBD, whereas glycine substitution of either Trp228, Arg248, or both of PPARδ-LBD conferred saroglitazar concentration-dependent activation. Our findings may be valuable in the molecular design of PPARα/γ dual or PPARα/γ/δ pan agonists. |
DOI: | 10.1248/bpb.b21-00232 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D321 | Saroglitazar | Chemical drug | DB13115 | PPARA agonist; PPARG agonist | Antidiabetic drug | Approved in India | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |