Research Article Details
Article ID: | A22473 |
PMID: | 24532325 |
Source: | J Sci Food Agric |
Title: | Antihyperglycemic, hypolipidemic, hepatoprotective and antioxidative effects of dietary clove (Szyzgium aromaticum) bud powder in a high-fat diet/streptozotocin-induced diabetes rat model. |
Abstract: | BACKGROUND: Syzygium aromaticum (L.) Merr. & Perry (clove) bud is an important spice used in the preparation of several delicacies and in folklore for diabetes management. The present study was convened to assess the effects of dietary clove bud powder (CBP) on biochemical parameters in a type 2 diabetes rat model, induced by a combination of high-fat diet and low-dose streptozotocin (35 mg kg⁻¹) for 30 days. RESULTS: Diabetic rats were placed on dietary regimen containing 20-40 g kg⁻¹ clove bud powder. The results revealed that there was no significant (P > 0.05) difference in the average feed intake and weight changes between the rat groups. Furthermore, supplementation with CBP gradually reduced blood glucose level in diabetic rat compared to control diabetic rats without CBP supplementation (DBC). Moreover, reduced activity of α-glucosidase was observed in CBP and metformin-treated rat groups when compared to that of the DBC rat group. In addition, the DBC group had significantly (P < 0.05) higher lipid concentrations (except for high-density lipoprotein cholesterol) when compared to all other groups. Furthermore, CBP had significantly (P < 0.05) reduced activity of liver enzymes (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) and showed elevated levels of antioxidant status (glutathione, ascorbic acid, superoxide dismutase and catalase). CONCLUSION: The results suggest that the clove bud diet may attenuate hyperglycemia, hyperlipidemia, hepatotoxicity and oxidative stress in the type 2 diabetic condition. |
DOI: | 10.1002/jsfa.6617 |

Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D225 | Metformin | Chemical drug | DB00331 | PRKAB1 inducer activator; ETEDH inhibitor; GPD1 inhibitor | Improve insulin resistance | Under clinical trials | Details |
D386 | Vitamin C | Supplement | DB00126 | PLOD2 cofactor; PLOD3 cofactor; DBH cofactor; P3H1 cofactor; P3H2 cofactor; P3H3 cofactor; PLOD1 cofactor | -- | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D157 | Glucophage | Chemical drug | DB00331 | -- | -- | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |