Research Article Details
Article ID: | A22776 |
PMID: | 24316260 |
Source: | Gastroenterology |
Title: | Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. |
Abstract: | BACKGROUND & AIMS: There have been few studies of the role of de novo lipogenesis in the development of nonalcoholic fatty liver disease (NAFLD). We used isotope analyses to compare de novo lipogenesis and fatty acid flux between subjects with NAFLD and those without, matched for metabolic factors (controls). METHODS: We studied subjects with metabolic syndrome and/or levels of alanine aminotransferase and aspartate aminotransferase >30 mU/L, using magnetic resonance spectroscopy to identify those with high levels (HighLF, n = 13) or low levels (LowLF, n = 11) of liver fat. Clinical and demographic information was collected from all participants, and insulin sensitivity was measured using the insulin-modified intravenous glucose tolerance test. Stable isotopes were administered and gas chromatography with mass spectrometry was used to analyze free (nonesterified) fatty acid (FFA) and triacylglycerol flux and lipogenesis. RESULTS: Subjects with HighLF (18.4% ± 3.6%) had higher plasma levels of FFAs during the nighttime and higher concentrations of insulin than subjects with LowLF (3.1% ± 2.7%; P = .04 and P < .001, respectively). No differences were observed between groups in adipose flux of FFAs (414 ± 195 μmol/min for HighLF vs 358 ± 105 μmol/min for LowLF; P = .41) or production of very-low-density lipoprotein triacylglycerol from FFAs (4.06 ± 2.57 μmol/min vs 4.34 ± 1.82 μmol/min; P = .77). In contrast, subjects with HighLF had more than 3-fold higher rates of de novo fatty acid synthesis than subjects with LowLF (2.57 ± 1.53 μmol/min vs 0.78 ± 0.42 μmol/min; P = .001). As a percentage of triacylglycerol palmitate, de novo lipogenesis was 2-fold higher in subjects with HighLF (23.2% ± 7.9% vs 10.1% ± 6.7%; P < .001); this level was independently associated with the level of intrahepatic triacylglycerol (r = 0.53; P = .007). CONCLUSIONS: By administering isotopes to subjects with NAFLD and control subjects, we confirmed that those with NAFLD have increased synthesis of fatty acids. Subjects with NAFLD also had higher nocturnal plasma levels of FFAs and did not suppress the contribution from de novo lipogenesis on fasting. These findings indicate that lipogenesis might be a therapeutic target for NAFLD. |
DOI: | 10.1053/j.gastro.2013.11.049 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |