Research Article Details
Article ID: | A23112 |
PMID: | 24033085 |
Source: | Eur J Clin Invest |
Title: | Exercise as a therapeutic tool to prevent mitochondrial degeneration in nonalcoholic steatohepatitis. |
Abstract: | Nonalcoholic fatty liver disease, encompassing hepatic steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, is a significant health problem associated with modern lifestyle, based on caloric overconsumption and physical inactivity. Although the mechanisms associated with progression from the 'benign' steatosis to NASH are still elusive, mitochondrial dysfunction seems to play an important role in this degenerative process. Degeneration of mitochondrial function during NASH has been associated with impaired β-oxidation, oxidative phosphorylation and increased reactive oxygen species production, contributing to hepatocyte death and inflammatory response. Despite the fact that several therapeutic approaches can be used in the context of NASH, including insulin-sensitizing agents, anti-obesity drugs, lipid-lowering drugs or mitochondrial-targeted drugs, dietary and physical activity are still the most effective strategies. In fact, active lifestyles decrease insulin resistance and body weight and result in decreased histological signs of liver injury. In fatty liver, physical activity prevents the disease progression through mitochondrial adaptations, namely by increasing cytochrome c content, enzyme activities and fatty acid oxidation, which are lost after some days of physical inactivity. However, less is known about the effect of physical activity on NASH-associated mitochondrial dysfunction. After a brief characterization of NASH and its association with liver mitochondrial (dys)function, the present review addresses the impact of physical (in)activity on NASH and, particularly, the possible contribution of active lifestyles to the modulation of liver mitochondrial dysfunction. |
DOI: | 10.1111/eci.12146 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |