Research Article Details
Article ID: | A23430 |
PMID: | 23792151 |
Source: | Biochimie |
Title: | Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. |
Abstract: | The liver is generally considered as a relatively homogeneous organ containing four different cell types. It is however well-known that the liver is not homogeneous and consists of clearly demarcated metabolic zones. Hepatocytes from different zones show phenotypical heterogeneity in metabolic features, leading to zonation of metabolic processes across the liver acinus. Zonation of processes involved in glucose and fatty acid metabolism is rather flexible and therefore prone to change under (patho)physiological conditions. Hepatic zonation appears to play an important role in the segregation of the different metabolic pathways in the liver. As a consequence, perturbations in metabolic zonation may be a part of metabolic liver diseases. The metabolic syndrome is characterized by the inability of insulin to adequately suppress hepatic gluconeogenesis, leading to hyperglycemia, hyperinsulinemia and eventually to type II diabetes. As insulin promotes lipogenesis through the transcription factor sterol regulatory element binding protein (SREBP)-1c, one would expect that lipogenesis should also be impaired in insulin-resistant states. However, in the metabolic syndrome hepatic de novo lipogenesis is increased, leading to hyperlipidemia and hepatosteatosis, primarily in the pericentral zone. These observations suggest the co-existence of insulin resistant glucose metabolism and insulin sensitive lipid metabolism in the metabolic syndrome. Here we provide a theoretical framework to explain this so-called 'insulin signaling paradox' in the context of metabolic zonation of the liver. |
DOI: | 10.1016/j.biochi.2013.06.007 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D545 | Pig placenta extract | Biological extract | -- | -- | -- | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |