Research Article Details
Article ID: | A24405 |
PMID: | 22932913 |
Source: | Horm Metab Res |
Title: | Reversion of steatosis by SREBP-1c antisense oligonucleotide did not improve hepatic insulin action in diet-induced obesity mice. |
Abstract: | The literature has associated hepatic insulin action with NAFLD. In this sense, treatments to revert steatosis and improve hepatic insulin action become important. Our group has demonstrated that inhibition of Sterol Regulatory Element Binding Proteins-1c (SREBP-1c) reverses hepatic steatosis. However, insulin signals after NAFLD reversion require better investigation. Thus, in this study, we investigated if the reversal of NAFLD by SREBP-1c inhibitor results in improvement in the hepatic insulin signal in obesity mice. After installation/achievement of diet-induced obesity and insulin resistance, Swiss mice were divided into 3 groups: i) Lean, ii) D-IHS, diet-induced hepatic steatosis [no treatment with antisense oligonucleotide (ASO)], and iii) RD-IHS, reversion of diet-induced hepatic steatosis (treated with ASO). The mice were treated with ASO SREBP-1c as previously described by our group. After ASO treatment, one set of animals was anesthetized and used for in vivo test, and another mice set was anesthetized and used for histology and Western blot analysis. Reversion of diet-induced hepatic steatosis did not change blood glucose, glucose decay constant (k(ITT)), body weight, or serum insulin levels. In addition, results showed that the protocol did not improve insulin pathway signaling, as confirmed by the absence of changes in IR, IRS1, Akt and Foxo1 phosphorylation in hepatic tissue. In parallel, no alterations were observed in proinflammatory molecules. Thus, our results suggest that the inhibition of SREBP-1c reverts steatosis, but without improving insulin hepatic resistance. |
DOI: | 10.1055/s-0032-1321819 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |