Research Article Details

Article ID: A24502
PMID: 22827449
Source: Clin Sci (Lond)
Title: Cardiovascular disease is associated with high-fat-diet-induced liver damage and up-regulation of the hepatic expression of hypoxia-inducible factor 1α in a rat model.
Abstract: CVD (cardiovascular disease) is associated with abnormal liver enzymes, and NAFLD (non-alcoholic fatty liver disease) is independently associated with cardiovascular risk. To gain insights into the molecular events underlying the association between liver enzymes and CVD, we developed an HFD (high-fat diet)-induced NAFLD in the SHR (spontaneously hypertensive rat) and its control WKY (Wistar-Kyoto) rat strain. We hypothesized that hepatic induction of Hif1a (hypoxia-inducible factor 1&#945;) might be the link between CVD and liver injury. Male SHRs (n=13) and WKY rats (n=14) at 16 weeks of age were divided into two experimental groups: standard chow diet and HFD (10 weeks). HFD-fed rats, irrespective of the strain, developed NAFLD; however, only HFD-SHRs had focus of lobular inflammation and high levels of hepatic TNF&#945; (tumour necrosis factor &#945;). SHRs had significantly higher liver weight and ALT (alanine aminotransferase) levels, irrespective of NAFLD. Liver abundance of Hif1a mRNA and Hif1&#945; protein were overexpressed in SHRs (P<0.04) and were significantly correlated with ALT levels (R=0.50, P<0.006). This effect was not reverted by a direct acting splanchnic vasodilator (hydralazine). Angiogenesis may be induced by the HFD, but the disease model showed significantly higher hepatic Vegf (vascular endothelial growth factor) levels (P<0.025) even in absence of dietary insult. Hif1a mRNA overexpression was not observed in other tissues. Liver mRNA of Nr1d1 (nuclear receptor subfamily 1, group D, member 1; P<0.04), Ppara [Ppar (peroxisome-proliferator-activated receptor) &#945;; P<0.05], Pparg (Ppar&#947;; P<0.001) and Sirt1 (Sirtuin 1; P<0.001) were significantly upregulated in SHRs, irrespective of NAFLD. Sirt1 and Hif1a mRNAs were significantly correlated (R=0.71, P<0.00002). In conclusion, CVD is associated with Hif1a-related liver damage, hepatomegaly and reprogramming of liver metabolism, probably to compensate metabolic demands.
DOI: 10.1042/CS20120151