Research Article Details
Article ID: | A24610 |
PMID: | 22692588 |
Source: | Int J Mol Med |
Title: | Curcumin ameliorates mitochondrial dysfunction associated with inhibition of gluconeogenesis in free fatty acid-mediated hepatic lipoapoptosis. |
Abstract: | Insulin resistance occurs in almost all patients with non-alcoholic fatty liver disease (NAFLD), and mitochondrial dysfunction likely plays a pivotal role in the progression of fatty liver into non-alcoholic steatohepatitis (NASH). Curcumin is a compound derived from the spice turmeric, a spice that is a potent antioxidant, anti-carcinogenic, and anti-hepatotoxic agent. The aim of this study was to analyze the ability of curcumin to protect against the mitochondrial impairment induced by high free fatty acids (HFFAs) and to determine the underlying mechanism for this cytoprotection. Curcumin treatment inhibited the lipoapoptosis, ROS production and ATP depletion elicited by HFFA in primary hepatocytes. We demonstrate that curcumin effectively suppressed HFFA-induced production of phosphoenol pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) in hepatocytes. Not only did curcumin treatment increase mitochondrial DNA (mtDNA) copy number in hepatocytes, but it also increased levels of transcriptional factors that regulate mitochondrial biogenesis, including peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (Tfam). In addition, curcumin contributed to cell survival, as indicated by the restoration of the mitochondrial membrane potential (MMP) and the inhibition of the mitochondrial biogenesis induced by HFFA. Furthermore, this cytoprotection resulted from curcumin-mediated downregulation of the NF-κB p65 subunit, thereby inhibiting lipoapoptosis. Together, these data suggest that curcumin protects hepatocytes from HFFA-induced lipoapoptosis and mitochondrial dysfunction, which partially occurs through the regulation of mitochondrial biogenesis. |
DOI: | 10.3892/ijmm.2012.1020 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D092 | Curcumin | Chemical drug | DB11672 | PPARG; COX inhibitor | Anticancer agent; NSAID | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |