Research Article Details
Article ID: | A29606 |
PMID: | 33808404 |
Source: | Biomedicines |
Title: | Dulaglutide Alone and in Combination with Empagliflozin Attenuate Inflammatory Pathways and Microbiome Dysbiosis in a Non-Diabetic Mouse Model of NASH. |
Abstract: | Dysregulation of glucose homeostasis plays a major role in the pathogenesis of non-alcoholic steatohepatitis (NASH) as it activates proinflammatory and profibrotic processes. Beneficial effects of antiglycemic treatments such as GLP-1 agonist or SGLT-2 inhibitor on NASH in patients with diabetes have already been investigated. However, their effect on NASH in a non-diabetic setting remains unclear. With this aim, we investigated the effect of long-acting GLP1-agonist dulaglutide and SGLT-2 inhibitor empagliflozin and their combination in a non-diabetic mouse model of NASH. C57BL/6 mice received a high-fat-high-fructose (HFHC) diet with a surplus of cholesterol for 16 weeks. After 12 weeks of diet, mice were treated with either dulaglutide, empagliflozin or their combination. Dulaglutide alone and in combination with empagliflozin led to significant weight loss, improved glucose homeostasis and diminished anti-inflammatory and anti-fibrotic pathways. Combination of dulaglutide and empagliflozin further decreased MoMFLy6CHigh and CD4+Foxp3+ T cells. No beneficial effects for treatment with empagliflozin alone could be shown. While no effect of dulaglutide or its combination with empaglifozin on hepatic steatosis was evident, these data demonstrate distinct anti-inflammatory effects of dulaglutide and their combination with empagliflozin in a non-diabetic background, which could have important implications for further treatment of NASH. |
DOI: | 10.3390/biomedicines9040353 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D122 | Empagliflozin | Chemical drug | DB09038 | SLC5A2 inhibitor; SGLT-2 inhibitor | Improve insulin resistance | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D116 | Dulaglutide | Biological drug | DB09045 | GLP1R agonist | Improve insulin resistance | Under clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |