Research Article Details
Article ID: | A34486 |
PMID: | 23339067 |
Source: | Hepatology |
Title: | Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. |
Abstract: | UNLABELLED: In human and murine models of nonalcoholic steatohepatitis (NASH), increased hepatocyte apoptosis is a critical mechanism contributing to inflammation and fibrogenesis. Caspase 8 (Casp8) is essential for death-receptor-mediated apoptosis activity and therefore its modulation might be critical for the pathogenesis of NASH. The aim was to dissect the role of hepatocyte Casp8 in a murine model of steatohepatitis. We generated hepatocyte-specific Casp8 knockout (Casp8(Δhep) ) mice. Animals were fed with a methionine-choline-deficient (MCD) diet. Liver injury was assessed by histopathological analysis, apoptotic death, serum alanine aminotransferase (ALT), fluorescent-activated cell sorter (FACS), analysis of liver infiltration and inflammation, reactive oxygen species (ROS), and liver fibrosis. MCD feeding triggered steatosis, hepatic lipid storage, and accumulation of free fatty acid (FFA) in wildtype (WT) livers, which were significantly reduced in Casp8(Δhep) animals. Additionally, lack of Casp8 expression in hepatocytes reduced the MCD-dependent increase in apoptosis and decreased expression of proinflammatory cytokines as well as hepatic infiltration. As a consequence, ROS production was lower, leading to a reduction in the progression of liver fibrosis in Casp8(Δhep) livers. CONCLUSION: Selective ablation of Casp8 in hepatocytes ameliorates development of NASH by modulating liver injury. Casp8-directed therapy might be a plausible treatment for patients with steatohepatitis. (HEPATOLOGY 2013;57:2189-2201). |
DOI: | 10.1002/hep.26271 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D075 | Choline | Supplement | DB00122 | PLD2 product of; PLD1 product of | -- | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |