Research Article Details
Article ID: | A35925 |
PMID: | 19394977 |
Source: | Metabolism |
Title: | Effects of adiponectin transgenic expression in liver of nonalcoholic steatohepatitis model mice. |
Abstract: | We have previously reported that transgenic mice expressing nuclear sterol regulatory element-binding protein 1c (nSREBP-1c) in adipose tissue under the control of aP2 promoter, an inherited lipodystrophic model with insulin resistance and fatty liver, developed with age liver lesions similar to those of human nonalcoholic steatohepatitis (NASH). Because the spontaneous NASH model mice had marked hypoadiponectinemia, here we assessed the effect of adiponectin transgenically expressed in the liver of nSREBP-1c transgenic mice. The nSREBP-1c/adiponectin double-transgenic mice showed hepatic adiponectin production and restored circulating adiponectin levels. Both subtypes of adiponectin receptors proved to be expressed normally in the liver. Peroxisome proliferator-activated receptor-alpha was up-regulated in the double-transgenic mice. Histologic findings similar to those observed in the liver specimens of patients with NASH were observed in the livers from nSREBP-1c transgenic mice at the age of 30 weeks. In contrast, the NASH-like hepatic lesions were obviously attenuated in age-matched double-transgenic mice. Immunoreactivity of 8-hydroxy-2'-deoxyguanosine and proliferating cell nuclear antigen-positive cells were increased in nSREBP-1c transgenic mice, but not in the double-transgenic mice. Postload plasma glucose levels were significantly lower in the double-transgenic mice compared with nSREBP-1c transgenic mice, whereas serum leptin levels did not differ significantly in the 2 groups. These observations suggest that hypoadiponectinemia plays a key role in the pathogenesis of NASH associated with insulin resistance and may provide a clue to the novel therapy for human NASH. |
DOI: | 10.1016/j.metabol.2009.03.004 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |