Research Article Details
Article ID: | A37220 |
PMID: | 16231364 |
Source: | Hepatology |
Title: | Adipokines in NASH: postprandial lipid metabolism as a link between adiponectin and liver disease. |
Abstract: | Circulating levels of four adipokines (adiponectin, TNF-alpha, leptin, and resistin) and the postprandial lipid and adiponectin responses to an oral fat load were assessed in 25 non-obese, non-diabetic patients with biopsy-proven nonalcoholic steatohepatitis (NASH) and correlated with metabolic indices and liver histology. Circulating adiponectin was lower in NASH compared with controls (5,476 +/- 344 vs. 11,548 +/- 836 ng/mL; P = .00001) and on multiple regression analysis correlated negatively with liver steatosis, necroinflammation (OR = 5.0; P = .009), and fibrosis (OR = 8.0; P = .003). The magnitude of postprandial lipemia was significantly higher in NASH than in controls and was related to fasting adiponectin (beta = -0.78; P = .00003). Controls showed a significant increase in serum adiponectin in response to the fat load, whereas patients with NASH showed a slight decrease. Postprandial free fatty acids response correlated inversely with adiponectin response in both groups and independently predicted the severity of liver steatosis in NASH (beta = 0.51; P = .031). In conclusion, hypoadiponectinemia is present before overt diabetes and obesity appear and correlates with the severity of liver histology in NASH. Impaired postprandial lipid metabolism may be an additional mechanism linking hypoadiponectinemia and NASH and posing a higher cardiovascular risk to these subjects. The mechanism(s) underlying these differences are unknown, but the type of dietary fat seems to play a role. These findings may have important pathogenetic and therapeutic implications in both liver and metabolic disease. |
DOI: | 10.1002/hep.20896 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |