Research Article Details
Article ID: | A03757 |
PMID: | 33873073 |
Source: | J Pharm Biomed Anal |
Title: | Investigation of the therapeutic effect of Yinchen Wuling Powder on CCl4-induced hepatic fibrosis in rats by 1H NMR and MS-based metabolomics analysis. |
Abstract: | Hepatic fibrosis (HF) is a typical consequence of various chronic liver diseases, and there is still no ideal drug for its treatment. Yinchen Wuling Powder (YCWLP), a famous traditional Chinese medicine prescription, is effective for the treatment of icteric hepatitis, hepatic fibrosis, non-alcoholic fatty liver disease and other liver diseases in clinical practices, however, the underlying mechanisms of YCWLP on HF is still unclear. In this study, 1H NMR and MS-based metabolomics analysis along with body weight change, serum liver function indexes, serum liver fibrosis index and histopathological observations of liver were applied to evaluate the therapeutic effect of YCWLP on hepatic fibrosis and the mechanism associated with this. The results of the pharmacodynamics study show that YCWLP has a significant therapeutic effect on hepatic fibrosis. As for the metabolomics research, 7 metabolites in the plasma samples, 28 in the urine samples and 6 in the liver samples were significantly altered due to the protective effect of YCWLP on CCl4-induced hepatic fibrosis. These endogenous metabolites are involved in amino acid metabolism, carbohydrate metabolism, glycerophospholipid metabolism and gut bacteria metabolism. These findings suggest that YCWLP could treat hepatic fibrosis by promoting urea circulation and reducing blood ammonia accumulation, improving carbohydrate metabolism and reducing oxidative stress, improving glycerophospholipid metabolism and protecting cell membrane, and regulating intestinal flora metabolism. |
DOI: | 10.1016/j.jpba.2021.114073 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S06 | Regulating intestinal flora | intestine gut microbiota; gut microbiota | farnesoid X receptor (FXR); fibroblast growth factor-19 (FGF19) | Probiotics; Prebiotics; Rifaximin; Yaq-001; Cilofexor; EDP-305; EYP001a; INT-767 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |