Research Article Details
Article ID: | A38311 |
PMID: | 11584370 |
Source: | Hepatology |
Title: | High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. |
Abstract: | Nonalcoholic steatohepatitis (NASH) may progress to liver fibrosis and cirrhosis. Mechanisms directly involved in the development of fibrosis have been poorly investigated. Because connective tissue growth factor (CTGF) is an intermediate key molecule involved in the pathogenesis of fibrosing chronic liver diseases and is potentially induced by hyperglycemia, the aims of this study were to (1) study the expression of CTGF in vivo both in human liver biopsy specimens of patients with NASH and in an experimental model of obesity and type II diabetes (Zucker rats); and (2) analyze the effects of hyperglycemia and insulin in vitro on hepatic stellate cells. In vivo, CTGF overexpression was observed in the liver tissue of all of the 16 patients with NASH. CTGF immunostaining was mild in 7 cases (44%) and moderate or strong in 9 cases (56%). Staining was mainly detected in the liver extracellular matrix in parallel with the amount of liver fibrosis. Liver from fa/fa rats also showed CTGF overexpression by comparison with Fa/fa rats both at the messenger RNA (mRNA) level (3-fold increase) and protein level. In vitro, both CTGF mRNA and protein were significantly increased when hepatic stellate cells were incubated with either glucose or insulin. A slight increase in type I procollagen mRNA level was also observed in hepatic stellate cells incubated with glucose. In conclusion, this study suggests that hyperglycemia and insulin are key-factors in the progression of fibrosis in patients with NASH through the up-regulation of CTGF. |
DOI: | 10.1053/jhep.2001.28055 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |