Research Article Details
Article ID: | A04346 |
PMID: | 33655500 |
Source: | Br J Pharmacol |
Title: | Activation of thyroid hormone receptor-β improved disease activity and metabolism independent of body weight in a mouse model of non-alcoholic steatohepatitis and fibrosis. |
Abstract: | BACKGROUND AND PURPOSE: Activation of hepatic thyroid hormone receptor β (THR-β) is associated with systemic lipid lowering, increased bile acid synthesis, and fat oxidation. In patients with non-alcoholic steatohepatitis (NASH), treatment with THR-β agonists decreased hepatic steatosis and circulating lipids, and induced resolution of NASH. We chose resmetirom (MGL-3196), a liver-directed, selective THR-β agonist, as a prototype to investigate the effects of THR-β activation in mice with diet-induced obesity (DIO) and biopsy-confirmed advanced NASH with fibrosis. EXPERIMENTAL APPROACH: C57Bl/6J mice were fed a diet high in fat, fructose, and cholesterol for 34 weeks, and only biopsy-confirmed DIO-NASH mice with fibrosis were included. Resmetirom was administered at a daily dose of 3 mg·kg-1 p.o., for 8 weeks. Systemic and hepatic metabolic parameters, histological non-alcoholic fatty liver disease (NAFLD) activity and fibrosis scores, and liver RNA expression profiles were determined to assess the effect of THR-β activation. KEY RESULTS: Treatment with resmetirom did not influence body weight but led to significant reduction in liver weight, hepatic steatosis, plasma alanine aminotransferase activity, liver and plasma cholesterol, and blood glucose. These metabolic effects translated into significant improvement in NAFLD activity score. Moreover, a lower content of α-smooth muscle actin and down-regulation of genes involved in fibrogenesis indicated a decrease in hepatic fibrosis. CONCLUSION AND IMPLICATIONS: Our model robustly reflected clinical observations of body weight-independent improvements in systemic and hepatic metabolism including anti-steatotic activity. |
DOI: | 10.1111/bph.15427 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D300 | Resmetirom | Chemical drug | DB12914 | THRB agonist | Anti-fibrosis | Advanced in clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |