Research Article Details
Article ID: | A04552 |
PMID: | 33581653 |
Source: | Biomed Pharmacother |
Title: | Danthron ameliorates obesity and MAFLD through activating the interplay between PPARα/RXRα heterodimer and adiponectin receptor 2. |
Abstract: | Obesity and associated metabolic associated fatty liver diseases (MAFLD) are strongly associated with dysfunction of glucose and lipid metabolism. AMPKα and PPARα are key regulators in the lipid and glucose homeostasis, indicating that novel agents to activate them are promising therapeutic approaches for metabolic syndrome. Noticeably, as a natural anthraquinone derivative extracted from rhubarb, danthron can activate AMPKα in vitro. However, the protective effect of danthron on obesity and associated MAFLD in vivo, as well as the underlying mechanism remains unknown. In this study, obesity and associated MAFLD was induced in C57BL/6J mice by high fat diet (HFD), which were subjected to evaluations on the parameters of systematic metabolism. Simultaneously, the molecular mechanism of danthron on lipid metabolism was investigated in 3T3-L1-derived adipocytes and HepG2 cells in vitro. In vivo, danthron significantly attenuated the obesity and MAFLD by enhancing hepatic fatty acid oxidation, decreasing lipid synthesis, and promoting mitochondrial homeostasis. Mechanistically, danthron significantly promoted combination of RXRα and PPARα, enhanced the binding of RXRα/PPARα heterodimer to the promoter of adiponectin receptor 2 (AdipoR2), by which activating the AMPKα and PPARα pathway. Moreover, PPARα and AdipoR2 can interplay in a loop style. Collectively, this study demonstrates that danthron can substantially ameliorate obesity and associated hepatic steatosis via AdipoR2-mediated dual PPARα/AMPKα activation, which suggests that danthron might be a novel therapeutic approach for inhibition of obesity and hepatic steatosis. |
DOI: | 10.1016/j.biopha.2021.111344 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T07 | Bile acid receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress |
---|