Research Article Details
Article ID: | A46122 |
PMID: | 20919931 |
Source: | Antioxid Redox Signal |
Title: | Chronic exposure to a high-fat diet induces hepatic steatosis, impairs nitric oxide bioavailability, and modifies the mitochondrial proteome in mice. |
Abstract: | Obesity-related pathologies, such as nonalcoholic fatty liver disease, are linked to mitochondrial dysfunction and nitric oxide (NO) deficiency. Herein, we tested the hypothesis that a high-fat diet (HFD) modifies the liver mitochondrial proteome and alters proteins involved in NO metabolism, namely arginase 1 and endothelial NO synthase. Male C57BL/6 mice were fed a control or HFD and liver mitochondria were isolated for proteomics and reactive oxygen species measurements. Steatosis and hepatocyte ballooning were present in livers of HFD mice, with no pathology observed in the controls. HFD mice had increased serum glucose and decreased adiponectin. Mitochondrial reactive oxygen species was increased after 8 weeks in the HFD mice, but decreased at 16 weeks compared with the control, which was accompanied by increased uncoupling protein 2. Using proteomics, 22 proteins were altered as a consequence of the HFD. This cohort consists of oxidative phosphorylation, lipid metabolism, sulfur amino acid metabolism, and chaperone proteins. We observed a HFD-dependent increase in arginase 1 and decrease in activated endothelial NO synthase. Serum and liver nitrate + nitrite were decreased by HFD. In summary, these data demonstrate that a HFD causes steatosis, alters NO metabolism, and modifies the liver mitochondrial proteome; thus, NO may play an important role in the processes responsible for nonalcoholic fatty liver disease. |
DOI: | 10.1089/ars.2010.3395 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |