Research Article Details

Article ID: A04636
PMID: 33555523
Source: J Gastrointest Surg
Title: Gastric Bypass Increases Circulating Bile Acids and Activates Hepatic Farnesoid X Receptor (FXR) but Requires Intact Peroxisome Proliferator Activator Receptor Alpha (PPARα) Signaling to Significantly Reduce Liver Fat Content.
Abstract: BACKGROUND: We interrogate effects of gastric bypass (RYGB), compared with a low-calorie diet, on bile acid (BA), liver fat, and FXR, PPAR&#945;, and targets in rats with obesity and non-alcoholic fatty liver disease (NAFLD). METHODS: Male Wistar rats received a high-fat diet (obese/NAFLD, n=24) or standard chow (lean, n=8) for 12 weeks. Obese/NAFLD rats had RYGB (n=11), sham operation pair-fed to RYGB (pair-fed sham, n=8), or sham operation (sham, n=5). Lean rats had sham operation (lean sham, n=8). Post-operatively, five RYGB rats received PPAR&#945; antagonist GW6417. Sacrifice occurred at 7 weeks. We measured weight changes, fasting total plasma BA, and liver % steatosis, triglycerides, and mRNA expression of the nuclear receptors FXR, PPAR&#945;, and their targets SHP and CPT-I. RESULTS: At sacrifice, obese sham was heavier (p<0.01) than all other groups that had lost similar weight loss. Obese sham had lower BA levels and lower hepatic FXR, SHP, and CPT-I mRNA expression than lean sham (P<0.05, for all comparisons). RYGB had increased BA levels compared with obese and pair-fed sham (P<0.05, for both), while pair-fed sham had BA levels, similar to obese sham. Compared with pair-fed sham, RYGB animals had increased liver FXR and PPAR&#945; expression and signaling (P<0.05). Percentage of steatosis was lower in RYGB and lean sham, relative to obese and pair-fed sham (P<0.05, for all comparisons). PPAR&#945; inhibition after RYGB resulted in similar weight loss but higher liver triglyceride content (P=0.01) compared with RYGB alone. CONCLUSIONS: RYGB led to greater liver fat loss than low-calorie diet, an effect associated to increased fasting BA levels and increased expression of modulators of liver fat oxidation, FXR, and PPAR&#945;. However, intact PPAR&#945; signaling was necessary for resolution of NAFLD after RYGB.
DOI: 10.1007/s11605-021-04908-3