Research Article Details
Article ID: | A48107 |
PMID: | 23318884 |
Source: | Lab Invest |
Title: | Blockade of B-cell-activating factor signaling enhances hepatic steatosis induced by a high-fat diet and improves insulin sensitivity. |
Abstract: | Chronic inflammation is an important contributor to the development and progression of metabolic syndrome. Recent evidence indicates that, in addition to innate immune cells, adaptive immune cells have an important role in this process. We previously showed that the serum level of B-cell-activating factor (BAFF) was increased in patients with nonalcoholic steatohepatitis. However, it is currently unknown whether BAFF and BAFF-R (BAFF-R) have a role in lipid metabolism in the liver. To address this issue, the role played by BAFF and BAFF-R signaling in the development of insulin resistance and hepatic steatosis was examined in BAFF-R(-/-) mice fed a high-fat diet (HFD). Furthermore, the effect of BAFF on lipid metabolism in hepatocytes was analyzed in vitro. BAFF-R(-/-) mice showed improvements in HFD-induced obesity and insulin resistance. In addition, the number of B cells, levels of serum IgG, and inflammation of visceral fat were reduced in these mice. However, the expression of steatogenic genes and fatty acid deposition in the liver was higher in these mice than in control mice. BAFF was also found to downregulate the expression of steatogenesis genes and enhance steatosis in hepatocytes through BAFF-R. Collectively, these data indicated that, in addition to its known functions in inflammation and glucose metabolism, BAFF has a protective role in hepatic steatosis by regulating lipid metabolism in the liver. |
DOI: | 10.1038/labinvest.2012.176 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |