Research Article Details
Article ID: | A48717 |
PMID: | 30817309 |
Source: | Rev Neurosci |
Title: | The effects of dietary methionine restriction on the function and metabolic reprogramming in the liver and brain - implications for longevity. |
Abstract: | Methionine is an essential sulphur-containing amino acid involved in protein synthesis, regulation of protein function and methylation reactions. Dietary methionine restriction (0.12-0.17% methionine in food) extends the life span of various animal species and delays the onset of aging-associated diseases and cancers. In the liver, methionine restriction attenuates steatosis and delays the development of non-alcoholic steatohepatitis due to antioxidative action and metabolic reprogramming. The limited intake of methionine stimulates the fatty acid oxidation in the liver and the export of lipoproteins as well as inhibits de novo lipogenesis. These effects are mediated by various signaling pathways and effector molecules, including sirtuins, growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding proteins, adenosine monophosphate-dependent kinase and general control nonderepressible 2 pathway. Additionally, methionine restriction stimulates the synthesis of fibroblast growth factor-21 in the liver, which increases the insulin sensitivity of peripheral tissues. In the brain, methionine restriction delays the onset of neurodegenerative diseases and increases the resistance to various forms of stress through antioxidative effects and alterations in lipid composition. This review aimed to summarize the morphological, functional and molecular changes in the liver and brain caused by the methionine restriction, with possible implications in the prolongation of maximal life span. |
DOI: | 10.1515/revneuro-2018-0073 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D160 | Growth Hormone | Biological drug | DB00052 | GHR ligand; PRLR ligand | -- | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D343 | Somatropin | Biological drug | DB00052 | GHR ligand; PRLR ligand | Hormone replacement drug | Under clinical trials | Details |