Research Article Details
Article ID: | A52064 |
PMID: | 31706843 |
Source: | Biochem Pharmacol |
Title: | Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity. |
Abstract: | Medicinal cannabis has remarkable therapeutic potential, but its clinical use is limited by the psychotropic activity of Δ9-tetrahydrocannabinol (Δ9-THC). However, the biological profile of the carboxylated, non-narcotic native precursor of Δ9-THC, the Δ9-THC acid A (Δ9-THCA-A), remains largely unexplored. Here we present evidence that Δ9-THCA-A is a partial and selective PPARγ modulator, endowed with lower adipogenic activity than the full PPARγ agonist rosiglitazone (RGZ) and enhanced osteoblastogenic effects in hMSC. Docking and in vitro functional assays indicated that Δ9-THCA-A binds to and activates PPARγ by acting at both the canonical and the alternative sites of the ligand-binding domain. Transcriptomic signatures in iWAT from mice treated with Δ9-THCA-A confirmed its mode of action through PPARγ. Administration of Δ9-THCA-A in a mouse model of HFD-induced obesity significantly reduced fat mass and body weight gain, markedly ameliorating glucose intolerance and insulin resistance, and largely preventing liver steatosis, adipogenesis and macrophage infiltration in fat tissues. Additionally, immunohistochemistry, transcriptomic, and plasma biomarker analyses showed that treatment with Δ9-THCA-A caused browning of iWAT and displayed potent anti-inflammatory actions in HFD mice. Our data validate the potential of Δ9-THCA-A as a low adipogenic PPARγ agonist, capable of substantially improving the symptoms of obesity-associated metabolic syndrome and inflammation. |
DOI: | 10.1016/j.bcp.2019.113693 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D311 | Rosiglitazone | Chemical drug | DB00412 | PPARG agonist; PPARA; PPARD | Improve insulin resistance | Failed in clinical trials | Details |