Research Article Details
Article ID: | A52190 |
PMID: | 30296183 |
Source: | Curr Med Res Opin |
Title: | Monogenic forms of lipodystrophic syndromes: diagnosis, detection, and practical management considerations from clinical cases. |
Abstract: | BACKGROUND: Lipodystrophic syndromes are rare diseases of genetic or acquired origin characterized by partial or generalized lack of body fat. Early detection and diagnosis are crucial to prevent and manage associated metabolic dysfunctions, i.e. insulin resistance, dyslipidemia, fatty liver, and diabetes, and to provide appropriate genetic counseling. By means of several representative case studies, this article illustrates the diagnostic and management challenges of lipodystrophic syndromes. REVIEW: Berardinelli-Seip congenital lipodystrophy (BSCL) is typically diagnosed at birth, or soon thereafter, with generalized lipoatrophy and hepatomegaly secondary to hepatic steatosis. Physicians must also consider this diagnosis in adults with atypical non-autoimmune diabetes, hypertriglyceridemia, and a lean and muscular phenotype. The BSCL1 subtype due to mutations in the AGPAT2 gene can have an unusual presentation, especially in neonates and infants. Particular attention should be paid to infants presenting failure to thrive who also have hepatomegaly and metabolic derangements. The BSCL2 sub-type due to mutations in the BSCL gene tends to be more severe than BSCL1, and is characterized by greater fat loss, mild intellectual disability, earlier onset of diabetes, and higher incidence of premature death. Effective management from an earlier age may moderate the natural disease course. Partial lipodystrophies may easily be confused with common central obesity and/or metabolic syndrome. In patients with unexplained pancreatitis and hypertriglyceridemia, lipodystrophies such as familial partial lipodystrophy type 2 (FPLD2; Dunnigan type, due to LMNA mutations) should be considered. Oral combined contraceptives, which can reveal the disease by inducing severe hypertriglyceridemia, are contraindicated. Endogenous estrogens may also lead to "unmasking" of the FPLD2 phenotype, which often appears at puberty, and is more severe in females than males. CONCLUSIONS: Diet and exercise, adapted to age and potential comorbidities, are essential prerequisites for therapeutic management of lipodystrophic syndromes. Metreleptin therapy can be useful to manage lipodystrophy-related metabolic complications. |
DOI: | 10.1080/03007995.2018.1533459 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I06 | 811 | Lipodystrophy | A connective tissue disease that is characterized by marked reduction, absence, and/or the redistribution of adipose tissue. https://www.ncbi.nlm.nih.gov/pubmed/25690482, https://www.ncbi.nlm.nih.gov/pubmed/25833179 | disease of anatomical entity/ musculoskeletal system disease/ connective tissue disease | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D545 | Pig placenta extract | Biological extract | -- | -- | -- | Under clinical trials | Details |
D226 | Metreleptin | Biological drug | DB09046 | LEPR agonist | CNS drug | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |