Research Article Details
Article ID: | A52845 |
PMID: | 20835701 |
Source: | Diabetologia |
Title: | Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age. |
Abstract: | AIMS/HYPOTHESIS: The endocannabinoid system has a key role in energy storage and metabolic disorders. The endocannabinoid receptor 2 (CB2R), which was first detected in immune cells, is present in the main peripheral organs responsible for metabolic control. During obesity, CB2R is involved in the development of adipose tissue inflammation and fatty liver. We examined the long-term effects of CB2R deficiency in glucose metabolism. METHODS: Mice deficient in CB2R (Cb2 ( -/- ) [also known as Cnr2]) were studied at different ages (2-12 months). Two-month-old Cb2 (-/-) and wild-type mice were treated with a selective CB2R antagonist or fed a high-fat diet. RESULTS: The lack of CB2R in Cb2 (-/-) mice led to greater increases in food intake and body weight with age than in Cb2 (+/+) mice. However, 12-month-old obese Cb2 (-/-) mice did not develop insulin resistance and showed enhanced insulin-stimulated glucose uptake in skeletal muscle. In agreement, adipose tissue hypertrophy was not associated with inflammation. Similarly, treatment of wild-type mice with CB2R antagonist resulted in improved insulin sensitivity. Moreover, when 2-month-old Cb2 (-/-) mice were fed a high-fat diet, reduced body weight gain and normal insulin sensitivity were observed. CONCLUSIONS/INTERPRETATION: These results indicate that the lack of CB2R-mediated responses protected mice from both age-related and diet-induced insulin resistance, suggesting that these receptors may be a potential therapeutic target in obesity and insulin resistance. |
DOI: | 10.1007/s00125-010-1894-6 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |