Research Article Details
Article ID: | A53035 |
PMID: | 16877964 |
Source: | J Hypertens |
Title: | Irbesartan restores the in-vivo insulin signaling pathway leading to Akt activation in obese Zucker rats. |
Abstract: | BACKGROUND: Angiotensin II (AII) has been shown to contribute to the pathogenesis of hypertension and insulin resistance. In addition, the administration of selective AII type 1 receptor blockers has been shown to improve insulin sensitivity. However, only a few studies have addressed the molecular mechanisms involved in this association. Furthermore, in a previous study we illustrated that obese Zucker rats (OZR) present increased serine 994 (Ser994) phosphorylation of hepatic insulin receptor, and this event seems to be implicated in the regulation of the intrinsic IRK in this model of insulin resistance. OBJECTIVE AND DESIGN: We examined the effects of chronic treatment with irbesartan (50 mg/kg a day for 6 months) on the hepatic insulin signaling system of OZR. METHODS: The extent of phosphorylation of several components of the insulin signaling system was assessed by immunoprecipitation, followed by immunoblotting with phosphospecific antibodies. In addition, liver AII levels and fat deposits were determined by immunohistochemistry and Oil red O, respectively. RESULTS: OZR displayed a marked attenuation in the in-vivo phosphorylation of several components of the insulin signaling pathways in the liver, together with significantly higher hepatic AII levels and hepatic steatosis when compared with lean Zucker rats. We found that in the livers of OZR long-term administration of irbesartan is associated with: (i) increased insulin-stimulated insulin receptor tyrosine phosphorylation; (ii) decreased insulin receptor Ser994 phosphorylation; (iii) augmented insulin receptor substrate (IRS) 1 and 2 abundance and tyrosine phosphorylation; (iv) augmented association between IRS and the p85 regulatory subunit of phosphatidylinositol 3-kinase; (v) increased insulin-induced Akt phosphorylation; and (vi) decreased hepatic steatosis. CONCLUSION: The present study provides substantial information that demonstrates that long-term selective AII blockade by irbesartan improves insulin signaling and is associated with decreased insulin receptor Ser994 phosphorylation in the liver of a representative animal model of the human metabolic syndrome. |
DOI: | 10.1097/01.hjh.0000239297.63377.3f |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I12 | 10763 | Hypertension | An artery disease characterized by chronic elevated blood pressure in the arteries. https://en.wikipedia.org/wiki/Hypertension, https://www.ncbi.nlm.nih.gov/pubmed/24352797 | disease of anatomical entity/ cardiovascular system disease/vascular disease/ artery disease | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |