Research Article Details
Article ID: | A00544 |
PMID: | 35052547 |
Source: | Antioxidants (Basel) |
Title: | Preventive Effects of β-Cryptoxanthin, a Potent Antioxidant and Provitamin A Carotenoid, on Lifestyle-Related Diseases-A Central Focus on Its Effects on Non-Alcoholic Fatty Liver Disease (NAFLD). |
Abstract: | Humans usually get dietary carotenoids from foods such as green and yellow vegetables and algae. Carotenoids have been reported to effectively reduce the risk of developing lifestyle-related diseases. β-Cryptoxanthin, which is an antioxidative carotenoid and a type of provitamin A, is metabolically converted to vitamin A. β-Cryptoxanthin has recently gained attention for its risk-reducing effects on lifestyle-related diseases, especially on non-alcoholic fatty liver disease (NAFLD), from epidemiological, interventional, and mechanistic studies. Retinoids (vitamin A) have also been reported to be useful as a therapeutic agent for NAFLD. Provitamin A is known to serve as a supply source of retinoids through metabolic conversion by the regulated activity of β-carotene 15,15'-monooxygenase 1 (BCMO1) to the retina only when retinoids are deficient. From mechanistic studies using NAFLD-model mice, β-cryptoxanthin has been shown to contribute to the improvement of NAFLD through a multifaceted approach, including improved insulin resistance, suppression of oxidative stress and inflammation, a reduction of macrophages and a shift of their subsets, and control of lipid metabolism by peroxisome proliferator-activated receptor (PPAR) family activation, which are also expected to have clinical applications. β-Cryptoxanthin has the potential to prevent lifestyle-related diseases from different angles, not only as an antioxidant but also as a retinoid precursor. |
DOI: | 10.3390/antiox11010043 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |