Research Article Details
Article ID: | A05516 |
PMID: | 33220425 |
Source: | Free Radic Biol Med |
Title: | Physiological evidence of mitochondrial permeability transition pore opening caused by lipid deposition leading to hepatic steatosis in db/db mice. |
Abstract: | Mitochondrial permeability transition pore (mPTP) is an important regulator in cell apoptosis and necrosis. However, its role in hepatic steatosis, especially its electrophysiological properties transformation remains elusive. Herein, using diabetes mice, we investigated the role of mPTP in hepatic steatosis triggered by diabetes and the mechanisms involved. We found that hepatic steatosis altered mitochondrial morphology, generating mega mitochondria, mitochondria swelling, calcein fluorescence quenching and mitochondrial membrane potential depolarization. At the same time, we confirmed an augmented mPTP opening with patch clamping in liver mitoplasts in db/db mice and a similar transformation with arachidonic acid (AA) simulating liquid deposition. We also found mPTP opening was significantly attenuated in wt mice after removing mitochondrial matrix, while that in db/db mice remained active. In addition, we observed that AA could directly activate mPTP in inside-out mode, independent of matrix calcium. In conclusion, we for the first time provided a physiological evidence of mPTP opening in lipid deposition, which could be directly induced by AA without Ca2+ and can be inhibited by cyclosporine A. As a result, it led to mitochondria morphology and function transformation. This might provide insights into potential therapeutic target for future treatment of mitochondrial liver disease. |
DOI: | 10.1016/j.freeradbiomed.2020.11.009 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D055 | Calcium | Chemical drug | DB01373 | CAST; COMP; CP; BMP4; MGP | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |