Research Article Details
Article ID: | A06182 |
PMID: | 32977558 |
Source: | Molecules |
Title: | Distinct Influence of Hypercaloric Diets Predominant with Fat or Fat and Sucrose on Adipose Tissue and Liver Inflammation in Mice. |
Abstract: | Overfeeding of a hypercaloric diet leads to obesity, diabetes, chronic inflammation, and fatty liver disease. Although limiting fat or carbohydrate intake is the cornerstone for obesity management, whether lowering fat or reducing carbohydrate intake is more effective for health management remains controversial. This study used murine models to determine how dietary fat and carbohydrates may influence metabolic disease manifestation. Age-matched C57BL/6J mice were fed 2 hypercaloric diets with similar caloric content, one with very high fat and low carbohydrate content (VHF) and the other with moderately high fat levels with high sucrose content (HFHS) for 12 weeks. Both groups gained more weight and displayed hypercholesterolemia, hyperglycemia, hyperinsulinemia, and liver steatosis compared to mice fed a normal low-fat (LF) diet. Interestingly, the VHF-fed mice showed a more robust adipose tissue inflammation compared to HFHS-fed mice, whereas HFHS-fed mice showed liver fibrosis and inflammation that was not observed in VHF-fed mice. Taken together, these results indicate macronutrient-specific tissue inflammation with excess dietary fat provoking adipose tissue inflammation, whereas moderately high dietary fat with extra sucrose is necessary and sufficient for hepatosteatosis advancement to steatohepatitis. Hence, liver and adipose tissues respond to dietary fat and sucrose in opposite manners, yet both macronutrients are contributing factors to metabolic diseases. |
DOI: | 10.3390/molecules25194369 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |