Research Article Details
Article ID: | A06382 |
PMID: | 32905826 |
Source: | Toxicology |
Title: | Dual TBK1/IKKε inhibitor amlexanox mitigates palmitic acid-induced hepatotoxicity and lipoapoptosis in vitro. |
Abstract: | The common causes of Non-alcoholic fatty liver disease (NAFLD) are obesity, dyslipidemia, and insulin resistance. Metabolic disorders and lipotoxic hepatocyte damage are hallmarks of NAFLD. Even though amlexanox, a dual inhibitor of TRAF associated nuclear factor κB (NF-κB) activator-binding kinase 1 (TBK1) and IκB kinase epsilon (IKKε), has been reported to effectively improve obesity-related metabolic dysfunctions in mice models, its molecular mechanism has not been fully investigated. This study was designed to investigate the effects of amlexanox on in vitro nonalcoholic steatohepatitis (NASH) model induced by treatment of palmitic acid (PA, 0.4 mM), using a trans-well co-culture system of hepatocytes and Kupffer cells (KCs). Stimulation with PA significantly increased the phosphorylation levels of TBK1 and IKKε in both hepatocytes and KCs, suggesting a potential role of TBK1/IKKε in PA-induced NASH progression. Treatment of amlexanox (50 μM) showed significantly reduced phosphorylation of TBK1 and IKKε and hepatotoxicity as confirmed by decreased levels of lactate dehydrogenase released from hepatocytes. Furthermore, PA-induced inflammation and lipotoxic cell death in hepatocytes were significantly reversed by amlexanox treatment. Intriguingly, amlexanox inhibited the activation of KCs and induced polarization of KCs towards M2 phenotype. Mechanistically, amlexanox treatment decreased the phosphorylation of interferon regulator factor 3 (IRF3) and NF-κB in PA-treated hepatocytes. However, decreased phosphorylation of NF-κB, not IRF3, was found in PA-treated KCs upon amlexanox treatment. Taken together, our findings show that treatment of amlexanox attenuated the severity of PA-induced hepatotoxicity in vitro and lipoapoptosis by the inhibition of TBK1/IKKε-NF-κB and/or IRF3 pathway in hepatocytes and KCs. |
DOI: | 10.1016/j.tox.2020.152579 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D465 | Amlexanox | Chemical drug | DB01025 | -- | -- | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |