Research Article Details
Article ID: | A06713 |
PMID: | 32772909 |
Source: | Comb Chem High Throughput Screen |
Title: | Evaluation of Insulin Resistance Induced Brain Tissue Dysfunction in Obese Dams and their Neonates: Role of Ipriflavone Amelioration. |
Abstract: | BACKGROUND: Nonalcoholic steatohepatitis (NASH) is associated with activation of liver fibrogenesis and predisposes to cirrhosis and associated morbi-mortality. A high fat high cholesterol diet (HFD) was provided to female albino rats to establish a NASH model. It is well known that the offspring of obese mothers have an increased risk of obesity and diabetes. The present study aimed at evaluating the ameliorative effects of ipriflavone (IP) as a natural food supplement on lipid metabolism, improving insulin sensitivity, reducing oxidative stress and inflammation, modifying metabolic risk factors and/or reduce brain damage, in both neonates and their dams. MATERIALS AND METHODS: The present aim was achieved by evaluating the oxidative stress and antioxidant defense system biomarkers, as thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) activities. In addition, the neurotransmitter acetylcholine (Ach) and acetylcholine esterase (AchE) activities, as well as levels of the apolipoprotein E4 (APOE4); β-secretase, hyper phosphor-tau and β-amyloid 42; 3-hydroxy- 3-methyl glutaryl coenzyme A reductase (HMG CoA R)" and COX-II by immunoblotting assays in the brain tissue of neonates and their dams in all the studied groups. RESULTS: A very significant amelioration in acetylcholine and acetylcholine esterase neurotransmitters, Alzheimer's makers (β-amyloid), antioxidants (reduced glutathione (GSH) contents, catalase (CAT) and superoxide dismutase (SOD); and inflammatory cytokines in NASH model is observed upon administrating ipriflavone (IP) as a natural food supplement. The multifunctional activities of ipriflavone as an antioxidant, anti-inflammatory and anti-insulin resistance drug were discussed and correlated with other investigations. CONCLUSION: Regarding steatohepatitis, the present study confirmed the anti-inflammatory effects of the ipriflavone (IP). Therefore, future studies should focus on hepatic fatty acid uptake, hepatic lipogenesis, and fatty acid oxidation and the role of IP in regulating hepatic fat metabolism. In addition, natural products like IP could be combined with the highly used pharmaceutical drugs to reduce the side effects of nonalcoholic steatohepatitis, and minimize progression of dementia. Moreover, the present study supports further attempts to heal the neural dysfunction via antioxidant and anti-inflammatory cascade activities using ipriflavone (IP). |
DOI: | 10.2174/1386207323666200808181148 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D075 | Choline | Supplement | DB00122 | PLD2 product of; PLD1 product of | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |