Research Article Details
Article ID: | A07689 |
PMID: | 32390455 |
Source: | Antioxid Redox Signal |
Title: | Intestinal Dysbiosis and Development of Cardiometabolic Disorders in Childhood Cancer Survivors: A Critical Review. |
Abstract: | Significance: Survivors of pediatric cancers have a high risk of developing side effects after the end of their treatments. Many potential factors have been associated with the onset of cardiometabolic disorders (CMD), including cancer disease itself, chemotherapy, hormonal treatment, radiotherapy, and genetics. However, the precise etiology and underlying mechanisms of these long-term complications are poorly understood. Recent Advances: Greater awareness is currently paid to the role of microbiota in the emergence of cancers and modulation of cancer therapies in both children and adults. Alterations in the composition and diversity of intestinal microbiota can clearly influence tumor development and progression as well as immune responses and clinical output. As dysbiosis is closely linked to the development of host metabolic diseases, including obesity, metabolic syndrome, type 2 diabetes, and non-alcoholic fatty liver disease, it may increase the risk of CMD in cancer populations. Critical Issues: Only limited studies targeting the profile of intestinal dysbiosis before and after cancer treatment have been conducted. Further, the exact contribution of intestinal dysbiosis to the development of CMD in cancer survivors is poorly appreciated. This review intends to clarify the influence of gut microbiota on CMD in childhood cancer survivors, elucidate the potential mechanisms, and evaluate the latest research on the interplay between diet/food supplement, microbiota, and cancer-related CMD. Future Directions: The implication of intestinal dysbiosis in late metabolic complications of childhood cancer survivors should be clarified. Intervention strategies could be developed to reduce the risk of survivors to CMD. Antioxid. Redox Signal. 34, 223-251. |
DOI: | 10.1089/ars.2020.8102 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S06 | Regulating intestinal flora | intestine gut microbiota; gut microbiota | farnesoid X receptor (FXR); fibroblast growth factor-19 (FGF19) | Probiotics; Prebiotics; Rifaximin; Yaq-001; Cilofexor; EDP-305; EYP001a; INT-767 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I11 | 5295 | Intestinal disease | A gastrointestinal system disease that is located_in the intestine. http://en.wikipedia.org/wiki/Human_gastrointestinal_tract | disease of anatomical entity/gastrointestinal system disease | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |