Research Article Details
Article ID: | A09313 |
PMID: | 31795130 |
Source: | Nutrients |
Title: | Lotus Seedpod Extracts Reduced Lipid Accumulation and Lipotoxicity in Hepatocytes. |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) is closely associated with metabolic disorders, including hepatic lipid accumulation and lipotoxicity. Plant-derived polyphenols have attracted considerable attention in the prevention of NAFLD. Lotus seedpod, rich in polyphenols, is a traditional Chinese herbal medicine. Previous studies have showed that lotus seedpod possess radioprotective, antioxidant, anti-cancer, and anti-inflammatory activities. In this study, the in vitro hepatoprotective effect of lotus seedpod extract (LSE) and its main component epigallocatechin (EGC) was examined. Firstly, oleic acid (OA), an unsaturated fatty acid, was used to induce the phenotype of NAFLD in human hepatocytes, HepG2 cells. LSE dose-dependently improved the OA-induced viability loss of HepG2 cells. Non-cytotoxic concentrations of LSE or EGC abolished intracellular lipid accumulation and oxidative stress in the OA-treated cells. In addition, LSE and EGC showed a minor effect on autophagy, and potential in reducing OA-induced occurrence of apoptosis confirmed by morphological and biochemical features, including an increase in the formation of apoptotic bodies, the exposure of phosphatidylserine, and activation of caspases. Molecular data showed the anti-apoptotic effect of LSE might be mediated via downregulation of the mitochondrial pathway. Our data imply that EGC-enriched LSE potentially could be developed as an anti-NAFLD agent. |
DOI: | 10.3390/nu11122895 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |