Repositioning Candidate Details

Candidate ID: R1413
Source ID: DB11842
Source Type: approved; investigational
Compound Type: small molecule
Compound Name: Angiotensin II
Synonyms: 5-isoleucine-angiotensin II; 5-L-isoleucineangiotensin II; Angiotensin; Angiotensin II; Angiotensin II (human); Angiotonin; Human angiotensin II; Hypertensin; Ile5-angiotensin II; isoleucine5-angiotensin II
Molecular Formula: C50H71N13O12
SMILES: CC[C@H](C)[C@H](NC(=O)[C@H](CC1=CC=C(O)C=C1)NC(=O)[C@@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O)C(C)C)C(=O)N[C@@H](CC1=CN=CN1)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O
Structure:
DrugBank Description: Angiotensin II is under investigation for the treatment of Sepsis, Septic Shock, Diabetes Mellitus, and Acute Renal Failure. Angiotensin II has been investigated for the treatment, basic science, and diagnostic of Hypertension, Renin Angiotensin System, and Idiopathic Membranous Nephropathy. As of December 21, 2017 the FDA approved La Jolla Pharmaceutical's Giapreza (angiotensin II) Injection for Intravenouse Infusion for the indication of acting as a vasoconstrictor to increase blood pressure in adults with septic or other distributive shock. The novelty of the medication lies in the fact that it is the first and only use of synthetic human angiotensin II to help maintain body blood pressure. Shock is the inability to maintain blood flow to vital tissues and the potential resultant organ failure and death within hours, no matter young or o ld. As distributive shock is the most common type of shock in the inpatient setting and affects up to one third of patients in the intensive care unit, the FDA determined that there is a need for treatment options for critically ill hypotensive patients who do not adequately respond to currently available therapies.
CAS Number: 4474-91-3
Molecular Weight: 1046.1786
DrugBank Indication: Angiotensin II is a vasoconstrictor indicated for increasing blood pressure in adults with septic or other distributive shock .
DrugBank Pharmacology: Angiotensin II is a naturally occurring peptide hormone of the renin-angiotensin-aldosterone-system (RAAS) that has the capacity to cause vasoconstriction and an increase in blood pressure in the human body. In the RAAS, juxtaglomerular cells of the renal afferent arteriole synthesize the proteolytic enzyme renin. Although stored in an inactive form called pro-renin, decreases in arterial blood pressure or extracellular fluid volume depletion can cause various enzymatic reactions to release active renin into the systemic circulation and surrounding tissues. Such renin release allows for the production of the alpha-2-globulin angiotensinogen predominantly in the liver and to some extent, the kidneys and other organs. Angiotensin I, itself a decapeptide with weak biological activity, is produced from angiotensinogen and then quickly converted to angiotensin II by angiotensin converting enzymes (ACE). Consequently, angiotensin II demonstrates its strong vasopressor activity when it is rapidly degraded by aminopeptidases A and M into further entities like angiotensin III and angiotensin IV, respectively. Such species like angiotensin III can then bind and interact with specific G protein coupled receptors like angiotensin receptor 1, or AT-1 where strong vasoconstricson can occur. Furthermore, in the ATHOS-3 clinical trial, for the 114 (70%) patient subjects in the angiotensin II arm who reached the target mean arterial pressure (MAP) at Hour 3, the median time to reach the target MAP endpoint was approximately 5 minutes. The angiotensin II was titrated to effect for each individual patient. .
DrugBank MoA: As part of the renin-angiotensin-aldosterone-system (RAAS), angiotensin II raises blood pressure by vasoconstriction, increased aldosterone release by the adrenal zona glomerulosa, sodium and water reabsorption in the proximal tubular cells, and vasopressin secretion The direct action of angiotensin II on surrounding vessel walls is facilitated by binding to the G-protein-coupled angiotensin II receptor type 1 (AT-1) on vascular smooth muscle cells, which stimulates Ca2+/calmodulin-dependent phosphorylation of myosin and causes smooth muscle contraction that results in vasoconstriction . The RAAS is ultimately regulated by a negative feedback effect of angiotensin II on renin production by the juxtaglomerular cells of the renal afferent arteriole. Unresuscitated septic shock associated with marked hypovolemia, extracellular fluid volume depletion, decreased cardiac output, low arterial blood pressure and decreased systemic vascular resistance causes an increase in renin secretion by the juxtaglomerular cells, resulting in elevated angiotensin II plasma levels and an increased secretion of aldosterone from the adrenal cortex. Angiotensin II binding to AT-1 receptors causes dose-dependent vasoconstriction of both afferent and efferent glomerular arterioles. The most pronounced effect of angiotensin II results on efferent arterioles, resulting in reduced renal blood flow and increased glomerular filtration pressure.
Targets: Type-1 angiotensin II receptor agonist
Inclusion Criteria: Target associated