Repositioning Candidate Details
Candidate ID: | R1458 |
Source ID: | DB12651 |
Source Type: | investigational |
Compound Type: | small molecule |
Compound Name: | Bardoxolone |
Synonyms: | Bardoxolone |
Molecular Formula: | C31H41NO4 |
SMILES: | CC1(C)CC[C@@]2(CC[C@]3(C)[C@@H]([C@@H]2C1)C(=O)C=C1[C@@]2(C)C=C(C#N)C(=O)C(C)(C)[C@@H]2CC[C@@]31C)C(O)=O |
Structure: |
|
DrugBank Description: | Bardoxolone has been used in trials studying the treatment of LYMPHOMA and Solid Tumors. It is a synthetic triterpenoid and a highly potent activator of redox-sensitive signaling pathways that induce programmed cell death (apoptosis) in cancer cells that are under high levels of intrinsic oxidative stress. In contrast, Bardoxolone in normal cells induces protective antioxidant/anti-inflammatory responses. |
CAS Number: | 218600-44-3 |
Molecular Weight: | 491.672 |
DrugBank Indication: | -- |
DrugBank Pharmacology: | -- |
DrugBank MoA: | Bardoxolone, a synthetic triterpenoid, is a highly potent activator of redox-sensitive signaling pathways that induce programmed cell death (apoptosis) in cancer cells that are under high levels of intrinsic oxidative stress. In contrast, Bardoxolone in normal cells induces protective antioxidant/anti-inflammatory responses. Intensive research in animal models of human cancer has demonstrated that Bardoxolone is a potent anticancer agent with a well-characterized ability to inhibit growth and cause regression of tumors as a single agent and in combination with radiation and chemotherapy. Bardoxolone also suppresses radiation- and chemotherapy-induced damage (e.g., oral mucositis) in normal tissues at dose levels that also produce an anti-cancer effect. Bardoxolone induces apoptosis through both caspase-independent and -dependent mechanisms, the latter involving caspase-8 activation, Bid cleavage, cytochrome c release, and caspase-3 activation. Furthermore, JNK, p38, and ERK pathways are involved in Bardoxolone-induced apoptosis of tumor cell lines mediated by disrupted intracellular redox balance and involving decreased glutathione and increased reactive oxygen species. Study shows that Bardoxolone enhances p42 CEBPA protein at the level of translation. |
Targets: | Caspase-8 |
Inclusion Criteria: | Therapeutic strategy associated |

Strategy ID | Strategy | Synonyms | Related Targets | Related Drugs | |
---|---|---|---|---|---|
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|