Repositioning Candidate Details

Candidate ID: R1486
Source ID: DB13178
Source Type: approved; investigational; withdrawn
Compound Type: small molecule
Compound Name: Inositol
Synonyms: 1,2,3,5/4,6-cyclohexanehexol; cis-1,2,3,5-trans-4,6-cyclohexanehexol; Inositol; L-myo-Inositol; Meat sugar; meso-Inositol; myo-inositol
Molecular Formula: C6H12O6
SMILES: O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O
Structure:
DrugBank Description: Inositol is a collection of nine different stereoisomers but the name is usually used to describe only the most common type of inositol, myo-inositol. Myo-inositol is the cis-1,2,3,5-trans-4,6-cyclohexanehexol and it is prepared from an aqueous extract of corn kernels by precipitation and hydrolysis of crude phytate. These molecules have structural similarities to glucose and are involved in cellular signaling. It is considered a pseudovitamin as it is a molecule that does not qualify to be an essential vitamin because even though its presence is vital in the body, a deficiency in this molecule does not translate into disease conditions. Inositol can be found as an ingredient of OTC products by Health Canada but all current product whose main ingredient is inositol are discontinued. By the FDA, inositol is considered in the list of specific substances affirmed as generally recognized as safe (GRAS).
CAS Number: 87-89-8
Molecular Weight: 180.1559
DrugBank Indication: Inositol may be used in food without any limitation. As a drug, inositol is used as a nutrient supplement in special dietary foods and infant formula. As it presents a relevant role in ensuring oocyte fertility, inositol has been studied for its use in the management of polycystic ovaries. Inositol is also being researched for the treatment of diabetes, prevention of metabolic syndrome, aid agent for weight loss, treatment of depression, psychiatric disorder and anxiety disorder and for prevention of cancer.
DrugBank Pharmacology: Inositol can stimulate glucose uptake in skeletal muscle cells which allows the decrease in blood sugar levels. This effect is later seen as a reduction in urine glucose concentration and indicates a decrease in high blood sugar levels. In PCOS, the administration of inositol has produced the remission of symptoms as well as a reduction in male hormone secretion, a regulation of the cholesterol level, and a more efficient fat breakdown which allow to a significant reduction on body mass and appetite. In the cases of infertility, inositol has been proven to increase sperm count and motility, as well as increase the overall quality of oocytes and embryos. In the brain, inositol has been shown to produce an increase in serotonin receptor sensitivity. This activity produces an increase in GABA release. Some of the effects observed in the brain produced a relief in symptoms of anxiety and obsessive-compulsive disorders. In high doses, it has been shown to even reduce panic attacks. In cancer research, inositol has gained interest as it can act as an antioxidant, anti-inflammatory and it seems to enhance immune properties.
DrugBank MoA: The mechanism of action of inositol in brain disorders is not fully understood but it is thought that it may be involved in neurotransmitter synthesis and it is a precursor to the phosphatidylinositol cycle. The change that occurs in the cycle simulates when the postsynaptic receptor is activated but without activating the receptor. This activity provokes a fake activation which regulated the activity of monoamines and other neurotransmitters. Reports have shown that insulin resistance plays a key role in the clinical development of PCOS. The presence of hyperinsulinemia can induce an excess in androgen production by stimulating ovaries to produce androgens and by reducing the sex hormone binding globulin serum levels. One of the mechanisms of insulin deficiency is thought to be related to a deficiency in inositol in the inositolphosphoglycans. The administration of inositol allows it to act as a direct messenger of the insulin signaling and improves glucose tissue uptake. This mechanism is extrapolated to its functions in diabetes treatment, metabolic syndrome, and weight loss. In cancer, the mechanism of action of inositol is not fully understood. It is hypothesized that the administration of inositol increases the level of lower-phosphate inositol phosphates why can affect cycle regulation, growth, and differentiation of malignant cells. On the other hand, the formation of inositol hexaphosphate after administration of inositol presents antioxidant characteristics by the chelation of ferric ions and suppression of hydroxyl radicals.
Targets: --
Inclusion Criteria: Therapeutic strategy associated