Research Article Details
Article ID: | A10259 |
PMID: | 31408567 |
Source: | Hepatol Res |
Title: | Identification of two microRNA nodes as potential cooperative modulators of liver metabolism. |
Abstract: | AIM: Hepatic insulin resistance is a hallmark of type 2 diabetes and non-alcoholic fatty liver disease. Dysregulation of microRNA (miRNA) expression in insulin-resistant livers might coordinate impaired hepatic metabolic function. Here, we aimed to discover miRNAs and their downstream targets involved in hepatic insulin resistance. METHODS: We determined miRNA expression profiles by small RNA sequencing of two mouse models of impaired hepatic insulin action: high-fat diet-induced obesity and liver-specific insulin receptor knockout. Conversely, we assessed the hepatic miRNA expression profile after treatment with the antidiabetic hormone, fibroblast growth factor 21 (FGF21). Ontology analysis of predicted miRNA gene targets was performed to identify regulated gene pathways. Target enrichment analysis and miRNA mimic overexpression in vitro were used to identify unified protein targets of nodes of regulated miRNAs. RESULTS: We identified an array of miRNA species regulated by impaired liver insulin action or after fibroblast growth factor 21 treatment. Ontology analysis of predicted miRNA gene targets identified pathways controlling hepatic energy metabolism and insulin sensitivity. We identified a node of two miRNAs downregulated in the livers of liver-specific insulin receptor knockout mice, miR-883b and miR-205, which positively regulate the expression of transcription factor zinc finger E-box-binding homeobox 1 (ZBED1). We found another node of two miRNAs upregulated in the livers of fibroblast growth factor 21-treated mice, miR-155-3p and miR-1968-5p, which canonically downregulates the caveola component, polymerase I and transcript release factor (PTRF), a gene previously implicated in hepatic energy metabolism. CONCLUSIONS: This study identifies two nodes of coregulated miRNAs that might coordinately control hepatic energy metabolism in states of insulin resistance. |
DOI: | 10.1111/hepr.13419 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D395 | Zinc | Chemical drug | DB01593 | PSPH; CCS; HDAC1 cofactor; HDAC4 cofactor; INS; UTRN; ASPA cofactor; TP73 cofactor; A2M; AGT; APOBR; APOE; APOL1; C3; C5; CFB; CFH; CFI; CLU; CP; CPN2; DSP; F12; F13B; FGA; GSN; HBB; HPR; JUP; SELENOP; TTR; VTN | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |