Research Article Details
Article ID: | A11014 |
PMID: | 31081822 |
Source: | J Vis Exp |
Title: | An Advanced Murine Model for Nonalcoholic Steatohepatitis in Association with Type 2 Diabetes. |
Abstract: | Obesity is associated with chronic low-grade inflammation and insulin resistance, contributing to an increasing prevalence of chronic metabolic diseases, such as type 2 diabetes and nonalcoholic steatohepatitis (NASH). Recent research has established that pro-inflammatory immune cells infiltrate obese hypertrophic adipose tissue and liver. Given the emerging importance of immune cells in the context of metabolic homeostasis, there is a critical need to quantify and characterize their modification during the development of type 2 diabetes and NASH. However, animal models that induce pathophysiological features typical of human NASH are sparse. In this article, we provide a detailed protocol to identify immune cell subsets isolated from liver and adipose tissue in a reliable mouse model of NASH, established by housing high-fat diet (HFD) mice under non-specific pathogen-free (SPF) conditions without a barrier for at least seven weeks. We demonstrate the handling of mice in non-SPF conditions, digestion of the tissues and identification of macrophages, natural killer (NK) cells, dendritic cells, B and T cell subsets by flow cytometry. Representative flow cytometry plots from SPF HFD mice and non-SPF mice are provided. To obtain reliable and interpretable data, the use of antibodies, accurate and precise methods for tissue digestion and proper gating in flow cytometry experiments are critical elements. The intervention to restore physiological antigen exposure in mice by housing them in non-SPF conditions and unspecific exposure to microbial antigens could provide a relevant tool for investigating the link between immunological alterations, diet-induced obesity and related long term complications. |
DOI: | 10.3791/59470 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |