Research Article Details
Article ID: | A11188 |
PMID: | 31007045 |
Source: | Antioxid Redox Signal |
Title: | Peroxiredoxin 6 Confers Protection Against Nonalcoholic Fatty Liver Disease Through Maintaining Mitochondrial Function. |
Abstract: | Aims: Nonalcoholic fatty liver disease (NAFLD) is accompanied by excessive reactive oxygen species (ROS) production, which has been suggested in several studies to link with mitochondrial function. However, the mechanistic role of ROS-mediated regulation of mitochondrial function in NAFLD has not been elucidated. Since peroxiredoxin 6 (PRDX6) is the only member of the antioxidant PRDX family that translocates to damaged mitochondria, we investigated the PRDX6-mediated antisteatotic mechanism using genetically modified mice and cells. Results: PRDX6 mice were more protective to lipid accumulation, liver injury, and insulin resistance after a high-fat diet. Mechanistically, PRDX6 is required for induction of mitochondrial antioxidant action and beta-oxidation through maintaining mitochondrial integrity and subsequently prevents ROS-induced lipogenesis. Interestingly, oxidative stress-induced Notch signaling was suppressed in PRDX6 mice compared with wild-type mice, and genetic and pharmacological inhibition of Notch signaling improved lipid accumulation. Finally, PRDX knockdown or Notch inhibition reduced induction of mitophagy. PRDX6 antagonizes positive feedback loop between lipid accumulation and ROS production through regulation of mitochondrial function. Innovation: For the first time, we demonstrate that PRDX6 maintains mitochondria integrity under oxidative stress and protects against NAFLD progression by inhibition of Notch signaling. Conclusion: This study describes a novel molecular mechanism underlying the antisteatotic activity of PRDX6, which may be a new therapeutic strategy for the treatment of NAFLD. |
DOI: | 10.1089/ars.2018.7544 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |