Research Article Details
Article ID: | A11217 |
PMID: | 30991877 |
Source: | Gut Microbes |
Title: | High intake of dietary fructose in overweight/obese teenagers associated with depletion of Eubacterium and Streptococcus in gut microbiome. |
Abstract: | Background: A western high fat, high carbohydrate diet has been shown to be associated with decreased gut bacterial diversity and reductions in beneficial bacteria. This gut bacteria dysbiosis could develop in early life and contribute to chronic disease risk such as obesity, type 2 diabetes and non-alcoholic fatty liver disease.Objective: To determine how dietary macronutrients are associated with the relative abundance of gut bacteria in healthy adolescents.Methods: Fifty-two obese participants (12-19 years) from two studies, many who were primarily of Hispanic background, provided fecal samples for 16S rRNA gene sequencing. Dietary macronutrients were assessed using 24-hour diet recalls and body composition was assessed using DEXA. General regression models assuming a negative binomial distribution were used to examine the associations between gut bacteria and dietary fiber, saturated fat, unsaturated fats, protein, added sugar, total sugar and free fructose after adjusting for age, gender, race/ethnicity, body fat percentage, study and caloric intake.Results: The genera Eubacterium (Benjamini-Hochberg (BH) corrected p-value = 0.10) and Streptococcus (BH corrected p-value = 0.04) were inversely associated with dietary fructose intake. There were no other significant associations between abundances of gut microbes and other dietary macronutrients, including fiber, fat, protein, total sugar or added sugar.Conclusions: High dietary fructose was associated with lower abundance of the beneficial microbes Eubacterium and Streptococcus, which are involved with carbohydrate metabolism. |
DOI: | 10.1080/19490976.2019.1592420 |

Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |